分享:
分享到微信朋友圈
X
综述
磁共振mapping技术在左室肥厚性疾病鉴别中的应用
陈艳菲 刘鹏飞

Cite this article as: Chen YF, Liu PF. Application of magnetic resonance mapping technology in the differentiation of left ventricular hypertrophic diseases. Chin J Magn Reson Imaging, 2020, 11(12): 1198-1200.本文引用格式:陈艳菲,刘鹏飞.磁共振mapping技术在左室肥厚性疾病鉴别中的应用.磁共振成像, 2020, 11(12): 1198-1200. DOI:10.12015/issn.1674-8034.2020.12.028.


[摘要] 目前左室肥厚性疾病的早期诊断仍面临许多挑战,难以在病变早期实施有效治疗。磁共振作为心肌病变无创性诊断的"金标准",利用mapping技术定量分析不同疾病心肌受累的特点,补充部分鉴别诊断信息,与对比剂延迟强化(late gadolinium enhancement,LGE)技术相结合,大大提高了疾病的早期诊断率,具有重要的风险评估、治疗指导价值。笔者就左室肥厚性疾病心肌mapping参数值的变化特点展开综述,以期为鉴别诊断提供必要信息。
[Abstract] Early diagnosis of left ventricular hypertrophy disease still faces many challenges, and it is difficult to implement effective treatment in the early stage of the lesion. Magnetic resonance is the gold standard for noninvasive diagnosis of myocardial disease. MR mapping technology can quantitatively analyze the myocardial characteristics of different diseases, and supplement some information about differential diagnosis. Combined with LGE (late gadolinium enhancement) technology, it greatly improves the early diagnosis efficiency of the disease, and has important risk assessment and treatment guidance value. In this paper, the characteristics of myocardial mapping parameters in patients with left ventricular hypertrophy were reviewed in order to provide necessary information for differential diagnosis.
[关键词] 左室肥厚;磁共振成像;mapping技术;对比剂延迟强化
[Keywords] left ventricular hypertrophy;magnetic resonance imaging;mapping technology;late gadolinium enhancement

陈艳菲 哈尔滨医科大学附属第一医院磁共振科,哈尔滨 150001

刘鹏飞* 哈尔滨医科大学附属第一医院磁共振科,哈尔滨 150001

通信作者:刘鹏飞,E-mail:Pfeiliu@hotmail.com

利益冲突:无。


收稿日期:2020-06-19
接受日期:2020-08-04
中图分类号:R445.2; R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.12.028
本文引用格式:陈艳菲,刘鹏飞.磁共振mapping技术在左室肥厚性疾病鉴别中的应用.磁共振成像, 2020, 11(12): 1198-1200. DOI:10.12015/issn.1674-8034.2020.12.028.

       左室肥厚性疾病的早期诊断与鉴别对指导治疗、患者预后具有重要意义。心脏磁共振成像具有高软组织分辨率,是心肌无创性病理分析的首选方法,对比剂延迟强化(late gadolinium enhancement,LGE)是过多的对比剂积聚在由间质纤维化、水肿、异常物质沉积等病理原因扩大的细胞间隙内,表现为特异性的强化模式[1],与超声心动图相比,具有更高的诊断效能。但当心肌受累部位相近或呈弥漫性改变时,延迟强化模式则缺乏特异性,难以进行鉴别。目前,磁共振mapping技术的应用弥补了LGE技术的不足,它能够定量测量不同疾病受累组织的参数值,对早期病变的检出及病理分析具有明显的优势。

1 mapping技术相关参数分析

       磁共振mapping技术利用人体组织固有的T1、T2弛豫信息,实现了图像的量化,能够定量分析不同疾病受累组织特点:(1) T1 mapping序列:反映心肌细胞及间隙的双重信息,T1值随病理成分的不同而变化,在心梗、炎症、间质纤维化和蛋白异常沉积等情况下增加,在出血、脂肪浸润、顺磁性物质沉积等情况下降低[2];(2) T2 mapping序列:对心肌水肿、急性炎症反应较为灵敏,T2值异常增高;(3) T2* mapping序列:对铁含量较为敏感,常用于评估心肌铁过载以及铁缺乏[3],对心梗再灌注出血具有较好的识别作用。此外,由对比增强前、后T1 mapping序列衍生出的心肌细胞外容积比率(extracellular volume fraction,ECV)成像,能高效地评价各类间质病变,在纤维化、异常物质沉积、心肌细胞缺失等间质扩大因素中,ECV值异常增加;在心肌细胞肥大等间质缩小因素中,ECV值异常降低。

2 左室肥厚性疾病的诊断及鉴别

2.1 肥厚性心肌病

       肥厚性心肌病(hypertrophic cardiomyopathy,HCM)是以肌小节蛋白基因突变为主的常染色体显性遗传病,指南以左室非对称性肥厚≥15 mm,有家族史者≥13 mm为主要诊断依据[4],典型的形态学改变包括心肌细胞肥大、排列紊乱、弥漫性间质纤维化,是青少年猝死的主要原因之一[5]

       HCM的诊断较为困难,在排除其他左室肥厚性疾病后,常需基因学检测进行佐证,心电图异常Q波及ST-T段的改变对HCM的诊断具有提示作用。磁共振延迟图像显示为肌壁间或心外膜强化,以室间隔最为常见[6],延迟强化与右室肥大可共同作为心功能恶化的指标[7]。HCM患者心肌弥漫性受累,但LGE图像对病变的显示依赖于组织间的信号对比,故难以对其进行识别。Mapping技术定量显示了HCM心肌的受累部位和程度,能较好地评估弥漫性病变,与病理学结果高度一致[8]。肥厚性心肌病LGE阴性患者和LGE阳性患者心肌T1值、ECV值无明显统计学差异,均表现为异常升高[9],侧面体现了mapping技术较LGE技术发现早期病变的优越性。此外,HCM亚临床异常基因携带者的心肌ECV值也会增加,这为疾病的筛查、早期预防提供了重要信息[10]

2.2 高血压性左室肥厚

       高血压左室肥厚是由于心肌后负荷过大所致的适应性改变,左室同心或偏心重塑程度与高血压水平保持同步,常与HCM伴高血压进行鉴别,预后较好,早期控制血压、及时治疗可有效降低室壁厚度和纤维化受累程度,避免心律失常、心衰等不良事件的发生。

       高血压左室肥厚缺乏特异性的延迟强化模式,常表现为下壁中段肌壁间或心外膜线状、斑片状延迟高信号[6]。与HCM相比,高血压左室肥厚患者心脏的射血分数、总体LGE评分较低,但心尖段和中间段LGE评分却较高[11],说明二者心肌主要受累部位存在差异。

       高血压肥厚心肌T1值和ECV值均低于HCM患者,但高于健康受试者,其中T1值高出正常均值0~2个标准差,而HCM患者则高出2~5个标准差[9]。高血压心脏病患者经降压治疗,左室厚度、纤维化受累程度以及主动脉扩张性具有明显的改善,心肌ECV值可减低,且与抑制肾素血管紧张素醛固酮系统和交感神经系统相比,降压治疗才是改善主动脉重塑的根本[12,13]

       此外,磁共振图像纹理分析和心肌应变技术同样对高血压左室肥厚和HCM具有较好的鉴别效果,HCM患者心肌应变更低,预后更差[14,15]

2.3 心肌淀粉样变

       心肌淀粉样变左室肥厚以细胞间隙过量淀粉样蛋白沉积为特点,免疫球蛋白轻链衍生(immunoglobulin light-chain derived,AL)型和转甲状腺素(transthyretin,ATTR)型最为常见,可伴有骨髓瘤和其他系统受累表现[6,16]。晚期病情进展迅速,死亡率高。因此,早诊断、早治疗对挽救此类患者的生命至关重要。

       磁共振心肌延迟强化病灶数与心肌受累部位和程度相关,表现为心内膜下或透壁强化,常伴心包积液[6]。Mapping图像上,心肌T1值、ECV值明显增高,左室基底到心尖段ECV值、LGE强化程度呈梯度递减趋势[17]

       与AL型相比,ATTR型淀粉样变较少发生心肌细胞损伤,心功能障碍是由间质蛋白负荷过量所致,所以左室质量、ECV值较轻链衍生型更高,预后更好;而AL型患者心肌免疫球蛋白浸润的同时,伴有心肌细胞的损伤,具有较高的T2值,这对二者具有重要的鉴别意义[18]。此外,ECV能够对心肌淀粉样变患者进行风险分层,具有死亡预测价值[17,18],是唯一一个与ATTR型淀粉样变神经损伤相关的心脏磁共振参数[19]

       与HCM和高血压左室肥厚壁间或心外膜延迟强化不同,淀粉样变主要表现为心内膜LGE高信号,常伴心包积液[6],心肌T1值、ECV值均大于HCM,具有统计学意义[20]

       此外,Khalique等[21]将DT-MRI应用于心脏,显示淀粉样变心肌的扩散系数高于HCM,且与左室ECV、周向应变关系密切,对疾病的鉴别具有良好的提示作用。

2.4 安德森-法布里病

       安德森-法布里病是X-连锁溶酶体贮积病,糖鞘脂在细胞内过多蓄积,病理改变为心肌细胞肥大、炎性损伤、间质纤维化。早期诊断、治疗可有效预防心肌不可逆性损伤,对患者预后极其重要[22]

       法布里病常表现为左室基底下外侧壁肌壁间延迟强化,反映心肌的慢性炎症,强化程度与心率失常等不良事件密切相关,因此常被当作心脏高风险的预测指标[23]。法布里病患者mapping各参数值随病理过程主要发生4次改变:(1)童年鞘磷脂异常储存期:心肌T1值正常;(2)储存过量,心肌细胞肥大期:心肌T1值、ECV值减低;(3)心肌炎症浸润期:心肌T2值升高,T1值回升,甚至正常,ECV值基本不变;(4)心肌细胞死亡,间质纤维化期:ECV值开始回升,甚至正常。法布里病具有性别差异,男性患者鞘磷脂积累速度快,左室肥厚出现早,T1值降低明显;女性患者则相反,左室肥厚出现较晚,所以LGE阳性的非左室肥厚患者大多为女性[24]

       与HCM相比,法布里病患者心肌T1值显著减低,其中间隔壁3、4和9段平均T1值与HCM患者差异最大,鉴别的敏感性、准确性最高[25]。法布里病患者乳头肌T1值与间隔壁同步变化,但异常肥大,与其他左室肥厚疾病相比,乳头肌左室质量比依次是法布里病>HCM>心肌淀粉样变>高血压性左室肥厚[26]

       早期酶替或者是更为优越的伴侣蛋白疗法可有效降低法布里病患者左室的质量、厚度,使得心肌T1值回升,但对晚期患者则无明显作用[27,28]

2.5 结节病

       结节病心肌受累的典型病理改变是活动期炎性肉芽肿和晚期纤维化,患者可有扩张性心肌病、肥厚性心肌病、致心率失常性右室心肌病等类似表现,缺乏特异性[29]

       磁共振延迟强化可敏感地判断结节病心肌是否受累,以左室间隔壁外膜或壁间延迟强化最为常见,其次发生在左室游离壁,延迟强化较少累及心内膜,是患者不良预后的预测指标[30]

       此外,mapping图像T1、T2值的改变,有助于区分活动性炎症和纤维化,对治疗具有指导作用。活动炎症期,病灶T2值增高,采用导管消融技术治疗难治性心率失常的成功率、复发率明显低于稳定期[31]。但此时通过免疫治疗可使活动期病变发生逆转[32],是拯救心肌细胞的关键时期。

       综上,磁共振mapping技术以组织学微观视角揭示了肥厚心肌的变化特点,打破了传统磁共振诊断的局限性,相信随着不断的完善与发展,mapping技术必将开启左室肥厚性疾病诊治的新篇章,成为早期鉴别、病情分析不可或缺的指标。

3 结语

       左室肥厚性疾病的早期诊断与患者预后息息相关。心脏磁共振成像对此类心肌病变具有高度的诊断优越性,LGE图像能清楚地获取心肌的主要受累部位、强化模式等初步诊断信息,结合mapping技术定量分析心肌各参数值的变化特点,有利于不同疾病导致的左室肥厚进行鉴别。同时,mapping图像心肌T1、T2及ECV值的改变,有助于纤维化、水肿、异常物质沉积等病理分析,对疾病预后风险评估、治疗具有重要的指导意义。

[1]
Nordin S, Dancy L, Moon JC, et al. Clinical applications of multiparametric CMR in left ventricular hypertrophy. Cardiovasc Imaging, 2018, 34(4): 577-585. DOI: 10.1007/s10554-018-1320-6.
[2]
Zhao SH. Cardiac MRI techniques: New challenges. Chin J Med Imaging Technol, 2017, 33(8): 1125-1128. DOI: 10.13929/j.1003-3289.201707120.
赵世华. 迎接心脏磁共振成像新技术挑战. 中国医学影像技术, 2017,33(8): 1125-1128. DOI: 10.13929/j.1003-3289.201707120.
[3]
Anderson L. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J, 2001, 22(23): 2171-2179. DOI: 10.1053/euhj.2001.2822.
[4]
Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
[5]
Tsybouleva N, Zhang L, Chen S, et al. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation, 2004, 109(10): 1284-1291. DOI: 10.1161/01.cir.0000121426.43044.2b.
[6]
Takeda M, Amano Y, Tachi M, et al. MRI differentiation of cardiomyopathy showing left ventricular hypertrophy and heart failure: differentiation between cardiac amyloidosis, hypertrophic cardiomyopathy, and hypertensive heart disease. Japanese J Radiol, 2013, 31(10): 693-700. DOI: 10.1007/s11604-013-0238-0.
[7]
Chacko BR, Karur GR, Connelly KA, et al. Left ventricular structure and diastolic function by cardiac magnetic resonance imaging in hypertrophic cardiomyopathy. Indian Heart J, 2018, 70(1): 75-81. DOI: 10.1016/j.ihj.2016.12.021.
[8]
Nakamori S, Dohi K, Ishida M, et al. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc Imaging, 2018, 11(1): 48-59. DOI: 10.1016/j.jcmg.2017.04.006.
[9]
Hinojar R, Varma N, Child N, et al. T1 mapping in discrimination of hypertrophic phenotypes: Hypertensive heart disease and hypertrophic cardiomyopathy clinical perspective. Circ Cardiovasc Imaging, 2015, 8(12): e003285. DOI: 10.1161/circimaging.115.003285.
[10]
Ho CY, Abbasi SA, Neilan TG, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging, 2013, 6(3): 415-422. DOI: 10.1161/circimaging.112.000333.
[11]
Puntmann VO, Jahnke C, Gebker R, et al. Usefulness of magnetic resonance imaging to distinguish hypertensive and hypertrophic cardiomyopathy. Am J Cardiology, 2010, 106(7): 1016-1022. DOI: 10.1016/j.amjcard.2010.05.036.
[12]
Treibel TA, Zemrak F, Sado DM, et al. Extracellular volume quantification in isolated hypertension - changes at the detectable limits?. J Cardiovascular Magn Reson, 2015, 17(1): 74. DOI: 10.1186/s12968-015-0176-3.
[13]
Ripley DP, Negrou K, Oliver JJ, et al. Aortic remodelling following the treatment and regression of hypertensive left ventricular hypertrophy: a cardiovascular magnetic resonance study. Clin Exper Hypertension, 2014, 37(4): 308-316. DOI: 10.3109/10641963.2014.960974.
[14]
Neisius U, Myerson L, Fahmy AS, et al. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy. PLoS One, 2019, 14(8): e0221061. DOI: 10.1371/journal.pone.0221061.
[15]
Neisius U, El-Rewaidy H, Nakamori S, et al. Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC: Cardiovasc Imaging, 2019, 12(10): 1946-1954. DOI: 10.1016/j.jcmg.2018.11.024.
[16]
Mavrogeni SI, Vartela V, Ntalianis A, et al. Cardiac amyloidosis: in search of the ideal diagnostic tool. Herz, 2019, DOI: . DOI: 10.1007/s00059-019-04871-5.
[17]
Wan K, Li W, Sun J, et al. Regional amyloid distribution and impact on mortality in light-chain amyloidosis: a T1 mapping cardiac magnetic resonance study. Amyloid, 2019, 26(1): 45-51. DOI: 10.1080/13506129.2019.1578742.
[18]
Kotecha T, Martinez-Naharro A, Treibel TA, et al. Myocardial edema and prognosis in amyloidosis. J Am College of Cardiol, 2018, 71(25): 2919-2931. DOI: 10.1016/j.jacc.2018.03.536.
[19]
Gallego-Delgado M, González-López E, Muñoz-Beamud F, et al. Extracellular volume detects amyloidotic cardiomyopathy and correlates with neurological impairment in transthyretin-familial amyloidosis. Revista Española de Cardiología (English Edition), 2016, 69(10): 923-930. DOI: 10.1016/j.rec.2016.02.027.
[20]
Nam BD, Kim SM, Jung HN, et al. Comparison of quantitative imaging parameters using cardiovascular magnetic resonance between cardiac amyloidosis and hypertrophic cardiomyopathy: inversion time scout versus T1 mapping. Inter J Cardiovasc Imaging, 2018, 34(11): 1769-1777. DOI: 10.1007/s10554-018-1385-2.
[21]
Khalique Z, Ferreira PF, Scott AD, et al. Diffusion tensor cardiovascular magnetic resonance in cardiac amyloidosis. Circ Cardiovasc Imaging, 2020, 13(5): e009901. DOI: 10.1161/circimaging.119.009901.
[22]
Frustaci A, Chimenti C, Doheny D, et al. Evolution of cardiac pathology in classic fabry disease: Progressive cardiomyocyte enlargement leads to increased cell death and fibrosis, and correlates with severity of ventricular hypertrophy. Inter J Cardiology, 2017, 248: 257-262. DOI: 10.1016/j.ijcard.2017.06.079.
[23]
Hanneman K, Karur GR, Wasim S, et al. Left ventricular hypertrophy and late gadolinium enhancement at cardiac MRI are associated with adverse cardiac events in fabry disease. Radiology, 2019, 294(1): 42-49. DOI: 10.1148/radiol.2019191385.
[24]
Nordin S, Kozor R, Medina-Menacho K, et al. Proposed stages of myocardial phenotype development in fabry disease. JACC: Cardiovasc Imaging, 2019, 12(8): 1673-1683. DOI: 10.1016/j.jcmg.2018.03.020.
[25]
Walter TC, Knobloch G, Canaan-Kuehl S, et al. Segment-by-segment assessment of left ventricular myocardial affection in Anderson-Fabry disease by non-enhanced T1-mapping. Acta Radiologica, 2017, 58(8): 914-921. DOI: 10.1177/0284185116675657.
[26]
Kozor R, Nordin S, Treibel TA, et al. Insight into hypertrophied hearts: a cardiovascular magnetic resonance study of papillary muscle mass and T1 mapping. Eur Heart J, 2016, 18(9): 1034-1040. DOI: 10.1093/ehjci/jew187.
[27]
Müntze J, Salinger T, Gensler D, et al. Treatment of hypertrophic cardiomyopathy caused by cardiospecific variants of Fabry disease with chaperone therapy. Eur Heart J, 2018, 39(20): 1861-1862. DOI: 10.1093/eurheartj/ehy072.
[28]
Nordin S, Kozor R, Vijapurapu R, et al. Myocardial storage, inflammation, and cardiac phenotype in fabry disease after one year of enzyme replacement therapy. Circ Cardiovasc Imaging, 2019, 12(12): e009430. DOI: 10.1161/CIRCIMAGING.119.009430
[29]
Bagwan IN, Hooper LV, Sheppard MN. Cardiac sarcoidosis and sudden death. The heart may look normal or mimic other cardiomyopathies. Virchows Archiv, 2011, 458(6): 671-678. DOI: 10.1007/s00428-010-1003-8.
[30]
Flamée L, Symons R, Degtiarova G, et al. Prognostic value of cardiovascular magnetic resonance in patients with biopsy-proven systemic sarcoidosis. Eur Radiol, 2020, 30(7): 3702-3710. DOI: 10.1007/s00330-020-06765-1.
[31]
Kaur D, Roukoz H, Shah M, et al. Impact of the inflammation on the outcomes of catheter ablation of drug-refractory ventricular tachycardia in cardiac sarcoidosis. J Cardiovasc Electrophysiol, 2020, 31(3): 612-620. DOI: 10.1111/jce.14341.
[32]
Crouser ED, Ruden E, Julian MW, et al. Resolution of abnormal cardiac MRI T2 signal following immune suppression for cardiac sarcoidosis. J Invest Med, 2016, 64(6): 1148-1150. DOI: 10.1136/jim-2016-000144.

上一篇 酰胺质子转移成像在中枢神经系统中的应用现状及进展
下一篇 齐心协力建设世界一流期刊
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2