分享:
分享到微信朋友圈
X
综述
重复经颅磁刺激与磁共振成像在抑郁症的研究进展
杨克硕 刘肖肖 白岩 王梅云 陈传亮

Cite this article as: Yang KS, Liu XX, Bai Y, et al. Advances in repetitive transcranial magnetic stimulation and magnetic resonance imaging in depression[J]. Chin J Magn Reson Imaging, 2021, 12(7): 90-93.本文引用格式:杨克硕, 刘肖肖, 白岩, 等. 重复经颅磁刺激与磁共振成像在抑郁症的研究进展[J]. 磁共振成像, 2021, 12(7): 90-93. DOI:10.12015/issn.1674-8034.2021.07.021.


[摘要] 抑郁症作为一种心境障碍,在全球范围内影响超过3亿人,已经成为全球残疾的主要原因,病情严重时甚至可导致自杀。重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)作为一种无创的非侵入性的抗抑郁治疗手段,利用脉冲磁场作用于中枢神经系统,影响脑内代谢和神经电活动,从而改善抑郁症患者的症状。作者从rTMS的治疗靶点和模式以及通过磁共振成像对rTMS效果的评估进行综述,以提高对rTMS改善抑郁症的核心症状的认识。
[Abstract] Depression, as a mood disorder, has become the main course of global disability. It has affected more than 300 million people worldwide and can even lead to suicide in severe cases. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive antidepressant therapy, can improve the symptoms of patients with depression by using pulsed magnetic fields, which can act on the central nervous system to affect brain metabolism and neuroelectrical activity. This article summarizes from these following aspects——the therapeutic targets and modes of rTMS and the effect evaluation of rTMS through magnetic resonance imaging, in order to improve the understanding of rTMS in ameliorating the core symptoms of depression.
[关键词] 抑郁症;重复经颅磁刺激;核心症状;磁共振成像
[Keywords] depression;repetitive transcranial magnetic stimulation;core symptom;magnetic resonance imaging

杨克硕 1   刘肖肖 2   白岩 1   王梅云 1   陈传亮 1*  

1 郑州大学人民医院 河南省人民医院影像科,郑州 450003

2 河南大学人民医院 河南省人民医院影像科,郑州 450003

陈传亮,E-mail:henanccl@163.com

全体作者均声明无利益冲突。


基金项目: 国家重点研发计划项目 2017YFE0103600 国家自然科学基金项目 81720108021
收稿日期:2021-04-09
接受日期:2021-05-08
DOI: 10.12015/issn.1674-8034.2021.07.021
本文引用格式:杨克硕, 刘肖肖, 白岩, 等. 重复经颅磁刺激与磁共振成像在抑郁症的研究进展[J]. 磁共振成像, 2021, 12(7): 90-93. DOI:10.12015/issn.1674-8034.2021.07.021.

       抑郁症其核心症状为情绪低落和快感缺失,常伴有认知功能损伤,严重时可导致自杀,是一种影响超过3亿人的精神疾病,是多年来导致残疾的主要原因[1]。但是只有约30%的抑郁症患者能够通过药物治疗使得相关症状缓解,部分耐药患者经过多次药物治疗效果不佳[2]。重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)是经美国食品和药物管理局(Food and Drug Administration,FDA)批准的安全、有效的脑刺激治疗方法,可以在一定程度缓解抑郁症患者(包括耐药抑郁症患者)的核心症状[3, 4, 5],目前我国药监局也批准了部分型号的rTMS机器被用于治疗抑郁症。功能磁共振成像(functional magnetic resonance imaging,fMRI)是一种广泛用于研究认知形式中的大脑活动的方法,可以提供特定对象的、整个大脑的高分辨率地图,反映由于任务要求而产生的代谢活动变化[6]。许多认知形式已经适应于磁共振成像环境,使其能够表现多种认知过程的神经活动。rTMS与fMRI和神经导航等技术相结合,不仅可以实现治疗靶点的精准定位,而且还可以准确地预测疗效,以实现个体化精准治疗[7, 8]。笔者将对抑郁症rTMS治疗靶点和模式,以及基于磁共振成像的rTMS疗效评估方面的研究进展进行综述,以便对rTMS治疗改善抑郁症核心症状的脑机制有更加深入的了解,从而更好地指导临床实践。

1 抑郁症的rTMS治疗靶点和模式

1.1 rTMS治疗靶点

       抑郁障碍是一种具有不同临床特征的异质综合征,会映射到不同的大脑区域。在抑郁症患者脑成像中,特定的大脑区域被证明存在功能异常,比如双侧扣带回、楔前叶、背内侧前额叶(dorsomedial prefrontal cortex,DMPFC)及背外侧前额叶(dorsolateral prefrontal cortex,DLPFC)等区域。

       过去20年的大规模中心实验和Meta分析证实了左侧DLPFC作为rTMS治疗抑郁症靶点的有效性和安全性[9, 10, 11, 12]。但是由于个体头颅轮廓以及大脑结构发育差异导致DLPFC的内部连通性在个体之间差异很大,所以通常使用的基于头皮测量“5 cm法则”或者“Beam F3”定位方法得到的DLPFC靶点可能没有功能定义,不是治疗所有抑郁症患者的理想区域[13, 14, 15, 16]。因此,目前迫切需要一种可以准确、有效以及个体化地定位治疗靶点的方法以提高疗效。而且在抑郁症中 “快感缺乏”和“焦虑”都是最常见的症状,但他们之间却有着不同的网络连接[17, 18, 19]。研究者发现对以“快感缺乏、悲伤以及自杀倾向”为主要表现的患者进行rTMS治疗时,当刺激的部位偏向于DLPFC的前外侧时往往有更好的效果[12,14,18]。而那些以“失眠、性欲下降及易怒”为主要表现的患者在DLPFC靠近内上的部位(此部位接近DMPFC)进行刺激时,会得到更好的疗效[12,18]。因此这就要求研究者在进行rTMS治疗时应该充分考虑患者之间的差异性以此提高疗效。

       因此针对这个问题,研究人员已经开始选择使用fMRI结合神经导航引导的个体化坐标作为刺激靶点,实现了从解剖定位到基于功能成像的定位的进步,大大提高了定位刺激靶点的准确率,实现精准治疗,提高疗效和预后[18,20, 21, 22, 23]。此外,Cash等[24]还开发了一种计算框架,在患者静息态fMRI扫描中可以自动且准确可靠的确定个性化刺激靶点,最重要的是还可以随着时间推移保持其功能保真度。

       随着人们对抑郁症发病机制的进一步研究,发现抑郁症不单单是某个大脑区域的障碍,而是整个大脑网络的障碍[25, 26, 27]。因此目前也有研究使用DMPFC和眶额叶皮质(orbitofrontal cortex,OFC)作为rTMS刺激靶点,并且都得到了令人满意的结果[19,28, 29, 30, 31, 32]。Feffer等[28]使用1 Hz rTMS刺激42例耐药或者对DMPFC-rTMS治疗方案失败患者的OFC靶点,他们认为OFC-rTMS会干扰一条“非奖励”途径,从而降低抑郁症患者OFC的过度活动,结果表明OFC作为刺激靶点的安全性、有效性以及可耐受性,而且有希望治愈那些DMPFC-rTMS治疗失败的患者。

1.2 刺激模式

       根据TMS刺激脉冲不同,TMS可分为:单脉冲TMS (single-pulse TMS,sTMS)、双脉冲TMS (double-pulse TMS,dTMS)以及rTMS。目前由于sTMS和dTMS刺激时间过长以及刺激强度不够已经不再作为一种治疗手段,rTMS由于具有连续可调重复刺激的特性,是目前采用最为广泛地一种手段。根据rTMS对刺激靶点所施加的刺激频率不同会引起不同脑活动的改变;高频rTMS (通常为≥10 Hz)会导致脑电活动的增加,而低频rTMS (通常为≤1 Hz)则有相反的作用。2008年FDA首次批准的常规治疗方案要求在左侧DLPFC部位进行标准的10 Hz高频rTMS刺激,每次治疗大约需要40 min。但是随着“H线圈”等新型刺激线圈的出现,也使得rTMS的刺激模式也出现了新的方式,主要有深度TMS (deep TMS)[33]、低场同步TMS (low-field synchronized TMS)[34]以及θ-爆发性刺激 (θ-burst stimulation,TBS)[35]。Brunoni等[9]对这几项刺激模式做了一项Meta分析,结果表明标准rTMS与dTMS,sTMS的疗效和可接受性仅有很小的差异,但是由于TBS的治疗时间相比于其他方式过短,还需要进一步的临床研究进行验证其疗效以及安全性。

       TBS模式是模拟人体内源性θ节律,发射以三个高频(50 Hz)脉冲组成的脉冲串,每个脉冲串间隔200 ms (5 Hz),且TBS包含两种不同刺激模式:连续性TBS (continuous TBS,cTBS)和间歇性TBS (intermittent TBS,iTBS)。TBS使得rTMS治疗时间明显缩短,使得患者在接受治疗时既节省时间又能提高依从性。Berlim等[36]对TBS对抑郁症的疗效和可接受性做了一项Meta分析,他们认为双侧DLPFC的cTBS刺激和左侧DLPFC的iTBS刺激可能是最有前途的治疗方法。Williams等[37]对6名耐药性抑郁患者使用iTBS刺激左侧DLPFC,结果证明iTBS模式是安全有效的。Blumberger等[38]就iTBS与标准10 Hz经颅磁刺激相比的临床有效性、安全性和耐受性的问题,做了一项随机非劣性试验,结果表明iTBS与标准10 Hz治疗方案相比缓解率相当,且刺激时间仅有3 min 9 s,这也就意味着iTBS刺激模式在相同的时间内可以治疗更多的患者。

       最新的研究表明优化刺激靶点和刺激间隔以及更高的刺激脉冲可能会进一步提升iTBS的疗效。因此斯坦福大学的Cole等[39]设计了一种名为斯坦福加速智能神经调制疗法新的加速大剂量的iTBS刺激方案,将每天的刺激脉冲增加到18 000个,是目前美国FDA批准的iTBS治疗方案的数倍,并且结合静息态功能连接磁共振成像(functional connectivity magnetic resonance imaging,FCMRI)引导的个体化坐标进行了试验。试验包括21名参与者,其中有19例达到了缓解标准,有效率高达90.5%,结果表明SAINT治疗方案不仅可行、安全且有效率高,而且可以结合功能磁共振成像实现靶向、个体化治疗。而且他们认为在人体耐受的范围内进一步提高刺激脉冲数量,可能会有更好的疗效。

       相比于rTMS,虽然TBS的刺激时间短,且疗效以及安全性已经得到了验证。但是研究者们发现接受TBS治疗的患者的疼痛评分普遍升高,而且症状改善持续时间较短,可能需要更多次的治疗[40]。此外,以上几项研究队列都相对较小,所以仍然需要大规模的临床双盲试验来进一步验证TBS模式的疗效和安全性。

2 磁共振成像评估rTMS效果

       目前,大部分研究中的rTMS的疗效都是通过治疗前后汉密尔顿(Hamilton Depression Rating Scale,HAMD)等相关抑郁量表的评分改变来进行评估,这种带有主观感受的量表评估方式多少都会造成一定的偏差,所以研究者们希望找到一些客观指标来评估rTMS治疗前后的改变。fMRI技术便为客观预测和评估rTMS疗效提供了技术支持[41]

       大量研究表明抑郁症是一种大脑网络连接出现异常的疾病,其中与默认网络(default mode network,DMN)、认知控制网络(cognitive control network,CCN)以及凸显网络(salience network,SN)的改变密切相关[17,27,42]。rTMS主要通过两个方面改善抑郁症的核心症状。一是认为rTMS可以调节神经网络之间的异常连接,即rTMS通过增强或者减弱神经网络之间的异常连接来改善抑郁症状[16,27,43, 44]。二是通过诱导兴奋性和抑制性突触的神经可塑性发挥其治疗作用[45, 46],使得抑郁症患者异常大脑区域的活动发生持久变化[11,47, 48]。并且在距离刺激部位较远的脑区也观察到了类似的大脑活动变化,这表明rTMS效应通过大脑内神经网络进行传播[13, 14,49, 50, 51],从而引起其他大脑区域的功能活动的改变。前期研究结果表明,通过多模态fMRI可以发现神经网络连通性的改变,从而使得研究人员能够在基线状态对疗效进行精准预测,为改善疗效提供重要的信息和帮助[8,23,52]

       越来越多的证据表明,rTMS的临床效果与刺激靶点的网络连通性相关程度很高,甚至已经超越了不同的刺激模式。研究人员发现当刺激传递到与亚属扣带回皮层(subgenual cingulate cortex,SGC)呈负性功能连接的DLPFC部位时,rTMS的疗效更好[12,20,23]。SGC位于扣带束前下端区域,广泛地连接横跨与抑郁症有关的前额叶和边缘结构[53],并且它与异常情绪调节和处理有关。亚属前扣带皮层(subgenual anterior cingulate cortex,sgACC)作为大脑网络连接中的重要节点,当刺激部位显示与sgACC有更强的负性连接时,rTMS的疗效更好[13, 14,53, 54, 55, 56]。Philip等[57]通过对33例患者治疗前后静息态FCMRI的变化进行分析,结果表明sgACC与DMN之间的负性连接越多,预测临床改善越好;杏仁核与腹内侧前额叶皮层(ventromedial prefrontal cortex,VMPFC)之间正性连接越多,临床改善越好。Weigand等[14]也通过使用静息态FCMRI评估了患者治疗前后功能连通性的改变,结果表明刺激部位与SCG之间的功能连接性可以预测疗效。但他们也发现亚属连通性可以预测认知和情感症状的改善,而不是躯体症状。这可能与我们前文所提到的“快感缺失”和“焦虑”之间的网络连接不同有关。

       除此之外,Du等[58]也采用基线fMRI评估了左侧DLPFC与左侧伏隔核(nucleus accumbens,NAcc)之间的固有功能连接强度,结果证明DLPFC-Nacc之间的固有连接强度可以预测rTMS的疗效。

       多模态fMRI不仅可以通过基线状态的功能连接来预测rTMS的疗效,也可以通过找到功能连接异常最明显的部位,为刺激靶点的选择提供重要依据,进一步实现个体化的精准治疗[23, 24]

3 问题和展望

       抑郁症作为世界上最常见的精神障碍性疾病类型,因缺乏高效的治疗方式给无数家庭带来了沉重的负担。而rTMS的出现及快速发展为无数的患者提供了新的治疗选择,不仅可以有效地缓解抑郁患者的核心症状,提高认知功能水平,并且有可靠的安全性和良好的疗效。但是rTMS目前还有急需解决的问题:(1) rTMS的最佳刺激靶点无法确定;(2) rTMS最佳刺激模式存在争议;(3) rTMS的疗效预测因子不能完全准确地预测症状的改善;(4) rTMS改善抑郁的神经网络机制还不完全明确。伴随着医学领域的快速发展,rTMS正在不断地融合新的影像技术来实现自身的快速发展和创新。虽然越来越多的证据表明,基于脑连接的rTMS刺激靶点可能会改善抑郁症状,但这些证据大多是基于回顾性分析或观察性试验。未来需要进行大样本、前瞻性的随机对照试验来进行验证。此外未来的工作也需要确定不同的抑郁症状是否需要不同的rTMS靶点,个体化的脑连接图像是否可以提高我们定位rTMS的能力,以及基于脑连通性的方法是否能在前瞻性随机对照试验中提高rTMS疗效。在未来,脑刺激创新的快速发展可以分为三个主要领域:新的靶点、新的刺激模式以及全面的多模态磁共振预测因子,使得rTMS在治疗抑郁症方面实现更加精准、更加快速以及个体化治疗的目标。

1
Kessler RC. The costs of depression[J]. Psychiatr Clin North Am, 2012, 35(1): 1-14. DOI: 10.1016/j.psc.2011.11.005.
2
Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report[J]. Am J Psychiatry, 2006, 163(11): 1905-1917. DOI: 10.1176/ajp.2006.163.11.1905.
3
Fitzgerald PB, Hoy KE, Anderson RJ, et al. A study of the pattern of response to rTMS treatment in depression[J]. Depress Anxiety, 2016, 33(8): 746-753. DOI: 10.1002/da.22503.
4
George MS. Whither TMS: a one-trick pony or the beginning of a neuroscientific revolution[J]. Am J Psychiatry, 2019, 176(11): 904-910. DOI: 10.1176/appi.ajp.2019.19090957.
5
Lisanby SH. Noninvasive brain stimulation for depression: the devil is in the dosing[J]. New Engl J Med, 2017, 376(26): 2593-2594. DOI: 10.1056/NEJMe1702492.
6
Balderston NL, Vytal KE, O'connell K, et al. Anxiety patients show reduced working memory related dlPFC activation during safety and threat[J]. Depress Anxiety, 2017, 34(1): 25-36. DOI: 10.1002/da.22518.
7
Davis SW, Luber B, Murphy DLK, et al. Frequency-specific neuromodulation of local and distant connectivity in aging and episodic memory function[J]. Hum Brain Mapp, 2017, 38(12): 5987-6004. DOI: 10.1002/hbm.23803.
8
Luber BM, Davis S, Bernhardt E, et al. Using neuroimaging to individualize TMS treatment for depression: toward a new paradigm for imaging-guided intervention[J]. NeuroImage, 2017, 148: 1-7. DOI: 10.1016/j.neuroimage.2016.12.083.
9
Brunoni AR, Chaimani A, Moffa AH, et al. Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: a systematic review with network Meta-analysis[J]. JAMA Psychiatry, 2017, 74(2): 143-152. DOI: 10.1001/jamapsychiatry.2016.3644.
10
O'Reardon JP, Solvason HB, Janicak PG, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial[J]. Biol Psychiatry, 2007, 62(11): 1208-1216. DOI: 10.1016/j.biopsych.2007.01.018.
11
Voineskos D, Blumberger DM, Zomorrodi R, et al. Altered transcranial magnetic stimulation-electroencephalographic markers of inhibition and excitation in the dorsolateral prefrontal cortex in major depressive disorder[J]. Biol Psychiatry, 2019, 85(6): 477-486. DOI: 10.1016/j.biopsych.2018.09.032.
12
Cash RFH, Weigand A, Zalesky A, et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression[J]. Biol Psychiatry, 2020, S0006-3223(20): 31668-1. DOI: 10.1016/j.biopsych.2020.05.033.
13
Cash RFH, Zalesky A, Thomson RH, et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization[J]. Biol Psychiatry, 2019, 86(2): e5-e7. DOI: 10.1016/j.biopsych.2018.12.002.
14
Weigand A, Horn A, Caballero R, et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites[J]. Biol Psychiatry, 2018, 84(1): 28-37. DOI: 10.1016/j.biopsych.2017.10.028.
15
Siddiqi SH, Trapp NT, Hacker CD, et al. Repetitive transcranial magnetic stimulation with resting-state network targeting for treatment-resistant depression in traumatic brain injury: a randomized, controlled, double-blinded pilot study[J]. J Neurotrauma, 2019, 36(8): 1361-1374. DOI: 10.1089/neu.2018.5889.
16
Singh A, Erwin-Grabner T, Sutcliffe G, et al. Personalized repetitive transcranial magnetic stimulation temporarily alters default mode network in healthy subjects[J]. Scientific reports, 2019, 9(1): 5631. DOI: 10.1038/s41598-019-42067-3.
17
Drysdale AT, Grosenick L, Downar J, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression[J]. Nat Med, 2017, 23(1): 28-38. DOI: 10.1038/nm.4246.
18
Siddiqi SH, Taylor SF, Cooke D, et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation[J]. Am J Psychiatry, 2020, 177(5): 435-446. DOI: 10.1176/appi.ajp.2019.19090915.
19
Downar J. Orbitofrontal cortex: a 'non-rewarding' new treatment target in depression?[J]. Current biology, 2019, 29(2): R59-r62. DOI: 10.1016/j.cub.2018.11.057.
20
Cash RFH, Cocchi L, Lv J, et al. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression[J]. JAMA Psychiatry, 2021, 78(3): 337-339. DOI: 10.1001/jamapsychiatry.2020.3794.
21
Nestor SM, Blumberger DM. Mapping symptom clusters to circuits: toward personalizing tms targets to improve treatment outcomes in depression[J]. Am J Psychiatry, 2020, 177(5): 373-375. DOI: 10.1176/appi.ajp.2020.20030271.
22
Balderston NL, Roberts C, Beydler EM, et al. A generalized workflow for conducting electric field-optimized, fMRI-guided, transcranial magnetic stimulation[J]. Nat Protoc, 2020, 15(11): 3595-3614. DOI: 10.1038/s41596-020-0387-4.
23
Ning L, Makris N, Camprodon JA, et al. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation[J]. Brain Stimul, 2019, 12(1): 129-138. DOI: 10.1016/j.brs.2018.10.004.
24
Cash RFH, Cocchi L, Lv J, et al. Personalized connectivity-guided DLPFC-TMS for depression: advancing computational feasibility, precision and reproducibility[J]. Hum Brain Mapp, 2021. [ DOI: ]. DOI: 10.1002/hbm.25330.
25
Hamilton JP, Farmer M, Fogelman P, et al. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience[J]. Biol Psychiatry, 2015, 78(4): 224-230. DOI: 10.1016/j.biopsych.2015.02.020.
26
Kaiser RH, Andrews-Hanna JR, Wager TD, et al. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity[J]. JAMA Psychiatry, 2015, 72(6): 603-611. DOI: 10.1001/jamapsychiatry.2015.0071.
27
Liston C, Chen AC, Zebley BD, et al. Default mode network mechanisms of transcranial magnetic stimulation in depression[J]. Biol Psychiatry, 2014, 76(7): 517-526. DOI: 10.1016/j.biopsych.2014.01.023.
28
Feffer K, Fettes P, Giacobbe P, et al. 1Hz rTMS of the right orbitofrontal cortex for major depression: Safety, tolerability and clinical outcomes[J]. Eur Neuropsychopharmacol, 2018, 28(1): 109-117. DOI: 10.1016/j.euroneuro.2017.11.011.
29
Scangos KW, Makhoul GS, Sugrue LP, et al. State-dependent responses to intracranial brain stimulation in a patient with depression[J]. Nat Med, 2021, 27(2): 229-231. DOI: 10.1038/s41591-020-01175-8.
30
Miron JP, Feffer K, Cash RFH, et al. Safety, tolerability and effectiveness of a novel 20 Hz rTMS protocol targeting dorsomedial prefrontal cortex in major depression: an open-label case series[J]. Brain Stimul, 2019, 12(5): 1319-1321. DOI: 10.1016/j.brs.2019.06.020.
31
Downar J, Daskalakis ZJ. New targets for rTMS in depression: a review of convergent evidence[J]. Brain Stimul, 2013, 6(3): 231-240. DOI: 10.1016/j.brs.2012.08.006.
32
Cho SS, Koshimori Y, Aminian K, et al. Investing in the future: stimulation of the medial prefrontal cortex reduces discounting of delayed rewards[J]. Neuropsychopharmacology, 2015, 40(3): 546-553. DOI: 10.1038/npp.2014.211.
33
Levkovitz Y, Isserles M, Padberg F, et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: a prospective multicenter randomized controlled trial[J]. World Psychiatry, 2015, 14(1): 64-73. DOI: 10.1002/wps.20199.
34
Leuchter AF, Cook IA, Feifel D, et al. Efficacy and safety of low-field synchronized transcranial magnetic stimulation (sTMS) for treatment of major depression[J]. Brain Stimul, 2015, 8(4): 787-794. DOI: 10.1016/j.brs.2015.05.005.
35
Bakker N, Shahab S, Giacobbe P, et al. rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation[J]. Brain Stimul, 2015, 8(2): 208-215. DOI: 10.1016/j.brs.2014.11.002.
36
Berlim MT, Mcgirr A, Dos Santos NR, et al. Efficacy of theta burst stimulation (TBS) for major depression: an exploratory meta-analysis of randomized and sham-controlled trials[J]. J Psychiatry Res, 2017, 90: 102-109. DOI: 10.1016/j.jpsychires.2017.02.015.
37
Williams NR, Sudheimer KD, Bentzley BS, et al. High-dose spaced theta-burst TMS as a rapid-acting antidepressant in highly refractory depression[J]. Brain, 2018, 141(3): e18. DOI: 10.1093/brain/awx379.
38
Blumberger DM, Vila-Rodriguez F, Thorpe KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial[J]. Lancet, 2018, 391(10131): 1683-1692. DOI: 10.1016/s0140-6736(18)30295-2.
39
Cole EJ, Stimpson KH, Bentzley BS, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression[J]. Am J Psychiatry, 2020, 177(8): 716-726. DOI: 10.1176/appi.ajp.2019.19070720.
40
Carpenter LL, Philip NS. The future is now? Rapid advances by brain stimulation innovation[J]. Am J Psychiatry, 2020, 177(8): 654-656. DOI: 10.1176/appi.ajp.2020.20060844.
41
Aizenstein HJ, Khalaf A, Walker SE, et al. Magnetic resonance imaging predictors of treatment response in late-life depression[J]. J Geriatr Psychiatry Neurol, 2014, 27(1): 24-32. DOI: 10.1177/0891988713516541.
42
Li BJ, Friston K, Mody M, et al. A brain network model for depression: from symptom understanding to disease intervention[J]. CNS Neurosci Ther, 2018, 24(11): 1004-1019. DOI: 10.1111/cns.12998.
43
Tik M, Hoffmann A, Sladky R, et al. Towards understanding rTMS mechanism of action: Stimulation of the DLPFC causes network-specific increase in functional connectivity[J]. Neuroimage, 2017, 162: 289-296. DOI: 10.1016/j.neuroimage.2017.09.022.
44
Sharma A, Wolf DH, Ciric R, et al. Common dimensional reward deficits across mood and psychotic disorders: a connectome-wide association study[J]. Am J Psychiatry, 2017, 174(7): 657-666. DOI: 10.1176/appi.ajp.2016.16070774.
45
Lenz M, Galanis C, Müller-Dahlhaus F, et al. Repetitive magnetic stimulation induces plasticity of inhibitory synapses[J]. Nat Communi, 2016, 7: 10020. DOI: 10.1038/ncomms10020.
46
Kinjo M, Wada M, Nakajima S, et al. Transcranial magnetic stimulation neurophysiology of patients with major depressive disorder: a systematic review and meta-analysis[J]. Psychol Med, 2021, 51(1): 1-10. DOI: 10.1017/s0033291720004729.
47
George MS, Wassermann EM, Williams WA, et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression[J]. Neuroreport, 1995, 6(14): 1853-1856. DOI: 10.1097/00001756-199510020-00008.
48
Pascual-Leone A, Rubio B, Pallardó F, et al. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression[J]. Lancet, 1996, 348(9022): 233-237. DOI: 10.1016/s0140-6736(96)01219-6.
49
Paus T, Jech R, Thompson CJ, et al. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex[J]. J Neurosci, 1997, 17(9): 3178-3184. DOI: 10.1523/jneurosci.17-09-03178.1997.
50
Rastogi A, Cash R, Dunlop K, et al. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation[J]. Neuroimage, 2017, 158: 48-57. DOI: 10.1016/j.neuroimage.2017.06.048.
51
Hawco C, Voineskos AN, Steeves JKE, et al. Spread of activity following TMS is related to intrinsic resting connectivity to the salience network: A concurrent TMS-fMRI study[J]. Cortex, 2018, 108: 160-72. DOI: 10.1016/j.cortex.2018.07.010.
52
Termenon M, Jaillard A, Delon-Martin C, et al. Reliability of graph analysis of resting state fMRI using test-retest dataset from the human connectome project[J]. Neuroimage, 2016, 142: 172-187. DOI: 10.1016/j.neuroimage.2016.05.062.
53
Riva-Posse P, Choi KS, Holtzheimer PE, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression[J]. Molecular psychiatry, 2018, 23(4): 843-849. DOI: 10.1038/mp.2017.59.
54
Hadas I, Zomorrodi R, Hill AT, et al. Subgenual cingulate connectivity and hippocampal activation are related to MST therapeutic and adverse effects[J]. Transl Psychiatry, 2020, 10(1): 392. DOI: 10.1038/s41398-020-01042-7.
55
Mcmullen DP. Where to target? The precision medicine approach to brain stimulation[J]. Biol Psychiatry, 2018, 84(1): e1-e2. DOI: 10.1016/j.biopsych.2018.04.010.
56
Hadas I, Sun Y, Lioumis P, et al. Association of repetitive transcranial magnetic stimulation treatment with subgenual cingulate hyperactivity in patients with major depressive disorder: a secondary analysis of a randomized clinical trial[J]. JAMA Netw Open, 2019, 2(6): e195578. DOI: 10.1001/jamanetworkopen.2019.5578.
57
Philip NS, Barredo J, Van 'T Wout-Frank M, et al. Network mechanisms of clinical response to transcranial magnetic stimulation in posttraumatic stress disorder and major depressive disorder[J]. Biological psychiatry, 2018, 83(3): 263-272. DOI: 10.1016/j.biopsych.2017.07.021.
58
Du L, Liu H, Du W, et al. Stimulated left DLPFC-nucleus accumbens functional connectivity predicts the anti-depression and anti-anxiety effects of rTMS for depression[J]. Transl Psychiatry, 2018, 7(11): 3. DOI: 10.1038/s41398-017-0005-6.

上一篇 软组织多形性玻璃样变血管扩张性肿瘤一例
下一篇 脑膜瘤分级分型影像学研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2