Share:
Share this content in WeChat
X
Review
The application of non-Gaussion DWI model in body diseases
WANG Ke  PAN Ting  ZHOU Xin  WU Guang-yao 

DOI:10.12015/issn.1674-8034.2016.01.014.


[Abstract] When perform diffusion-weighted imaging (DWI) at ultrahigh b-value, the standard monoexponential model analysis may not be suitable. Water molecules diffusion behaviors in the extracellular space away from Gaussian distribution, thus it is requiring a more sophisticated model for analysis the non-Gaussian behaviors of water. Diffusional kurtosis imaging (DKI) can describe this non-Gaussian diffusion effects of water and provide an additional parameter Kapp, which presumably reflects heterogeneity and irregularity of cellular microstructure, as well as the amount of interfaces within cellular tissue. A few studies have explored DKI outside the brain in rencent years. The most investigated organ is the prostate. Studies have shown that DKI can improve tumor detection and grading. A robust understanding of DKI is necessary for radiologists to better understand the meaning of DKI parameters in the context of different tumors and how these parameters vary between tumor types and in response to treatment. This article reviewed the basic principle, biological correlation, technique highlights and the clinical application in the body of DKI.
[Keywords] Non-Gaussian;Diffusion magnetic resonance imaging;Diffusional kurtosis imaging;Human Body

WANG Ke Department of Magnetic Resonance Imaging, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

PAN Ting Department of Magnetic Resonance Imaging, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

ZHOU Xin Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China

WU Guang-yao* Department of Magnetic Resonance Imaging, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

*Correspondence to: Wu GY, E-mail: Wuguangy2002@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  National Natural Science Foundation of China (NSFC) No. 81171315, 81227902
Received  2015-10-31
Accepted  2015-11-24
DOI: 10.12015/issn.1674-8034.2016.01.014
DOI:10.12015/issn.1674-8034.2016.01.014.

[1]
Le Bihan D. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology, 2013, 2(268): 318-322.
[2]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6): 1432-1440.
[3]
Suo S, Chen X, Wu L, et al. Non-Gaussian water diffusion kurtosis imaging of prostate cancer. Magn Reson Imaging, 2014, 32(5): 421-427.
[4]
Quentin M, Pentang G, Schimmöller L, et al. Feasibility of diffusional kurtosis tensor imaging in prostate MRI for the assessment of prostate cancer: preliminary results. Magn Reson Imaging, 2014, 32(7): 880-885.
[5]
Rosenkrantz AB, Sigmund EE, Johnson G, et al. Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology, 2012, 1(264): 126-135.
[6]
Metens T, Miranda D, Absil J, et al. What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3 T? Eur Radiol, 2012, 22(3): 703-709.
[7]
Kim CK, Park BK, Kim B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1000 and 2000 s/mm2. AJR Am J Roentgenol, 2010, 1(194): 33-37.
[8]
Ahn SJ, Choi SH, Kim Y, et al. Histogram analysis of apparent diffusion coefficient map of standard and high b-value diffusion MR imaging in head and neck squamous cell carcinoma. Acad Radiol, 2012, 19(10): 1233-1240.
[9]
Tamada T, Kanomata N, Sone T, et al. High b value (2,000 s/mm2) diffusion-weighted magnetic resonance imaging in prostate cancer at 3 tesla: comparison with 1,000 s/mm2 for tumor conspicuity and discrimination of aggressiveness. PLoS One, 2014, 5(9): e96619.
[10]
Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed, 2010, 23(7): 836-848.
[11]
Filli L, Wurnig M, Nanz D, et al. Whole-body diffusion kurtosis imaging: initial experience on non-Gaussian diffusion in various organs. Invest Radiol,2014, 49(12): 773-778.
[12]
Huang Y, Chen X, Zhang Z, et al. MRI quantification of non-Gaussian water diffusion in normal human kidney: a diffusional kurtosis imaging study. NMR Biomed, 2015, 28(2): 154-161.
[13]
Wang HJ, Pui MH, Guo Y, et al. Multiparametric 3-T MRI for differentiating low-versus high-grade and category T1 versus T2 bladder urothelial carcinoma. AJR Am J Roentgenol, 2015, 2(204): 330-334.
[14]
Gupta N, Sureka B, Kumar MM, et al. Comparison of dynamic contrast-enhanced and diffusion weighted magnetic resonance image in staging and grading of carcinoma bladder with histopathological correlation. Urology Annals, 2015, 7(2): 199.
[15]
Nonomura Y, Yasumoto M, Yoshimura K, et al. Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging, 2001, 5(13): 757-760.
[16]
Le Bihan D. The 'wet mind' : water and functional neuroimaging. Phys Med Biol, 2007, 52(7): R57-R90.
[17]
White NS, Dale AM. Distinct effects of nuclear volume fraction and cell diameter on high b-value diffusion MRI contrast in tumors. Magn Reson Med, 2014, 72(5): 1435-1443.
[18]
Anderson SW, Barry B, Soto J, et al. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling. J Magn Reson Imaging, 2014, 39(4): 827-834.
[19]
Veraart J, Poot DH, Van Hecke W, et al. More accurate estimation of diffusion tensor parameters using diffusion kurtosis imaging. Magn Reson Med, 2011, 65(1): 138-145.
[20]
Goshima S, Kanematsu M, Noda Y, et al. Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma. AJR Am J Roentgenol, 2015, 5(204): 543-549.
[21]
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed, 2010, 23(7): 698-710.
[22]
徐嬿, 冷晓明, 郑芸, 等. 3.0 T DCE-MRI定量分析在前列腺癌与增生鉴别诊断中的应用价值. 磁共振成像, 2015, 6(8): 608-612.
[23]
万红燕, 毕芸祺, 衣岩, 等. 基于体素内不相干运动的MR扩散加权成像对前列腺癌诊断价值的初步研究.磁共振成像, 2015, 6(6): 445-449.
[24]
闵祥德, 王良, 冯朝燕, 等. 基于前列腺影像报告和数据系统评估T2WI联合分段读出弥散加权成像诊断早期前列腺癌的价值. 磁共振成像, 2015, 6(4): 294-298.
[25]
Quentin M, Blondin D, Klasen J, et al. Comparison of different mathematical models of diffusion-weighted prostate MR imaging. Magn Reson Imaging, 2012, 30(10): 1468-1474.
[26]
Roethke MC, Kuder TA, Kuru TH, et al. Evaluation of diffusion kurtosis imaging versus standard diffusion imaging for detection and grading of peripheral zone prostate cancer. Invest Radiol, 2015, 50(8): 483-489.
[27]
Lu Y, Jansen JF, Mazaheri Y, et al. Extension of the intravoxel incoherent motion model to non-gaussian diffusion in head and neck cancer. J Magn Reson Imaging, 2012, 36(5): 1088-1096.
[28]
Yuan J, Waiyeung DK, Mok GS, et al. Non-Gaussian analysis of diffusion weighted imaging in head and neck at 3 T: a pilot study in patients with nasopharyngeal carcinoma. PLoS One, 2015, 5(42): e87024.
[29]
Chen Y, Ren W, Zheng D, et al. Diffusion kurtosis imaging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients. J Magn Reson Imaging, 2015, 5(42): 1354-1361.
[30]
Nogueira L, Brandão S, Matos E, et al. Application of the diffusion kurtosis model for the study of breast lesions. Eur Radiol, 2014, 24(6): 1197-1203.
[31]
Wu D, Li G, Zhang G, et al. Characterization of breast tumors using diffusion kurtosis imaging (DKI). PLoS One, 2014, 11(9): e113240.
[32]
Trampel R, Jensen JH, Lee RF, et al. Diffusional kurtosis imaging in the lung using hyperpolarized 3 He. Magn Reson Med, 2006, 56(4): 733-737.
[33]
Heusch P, Köhler J, Wittsack H, et al. Hybrid [18F]-FDG PET/MRI including non-Gaussian diffusion-weighted imaging (DWI): preliminary results in non-small cell lung cancer (NSCLC). Eur J Radiol, 2013, 82(11): 2055-2060.
[34]
Rosenkrantz AB, Sigmund EE, Winnick A, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants. Magn Reson Imaging, 2012, 30(10): 1534-1540.
[35]
Pentang G, Lanzman RS, Heusch P, et al. Diffusion kurtosis imaging of the human kidney: a feasibility study. Magn Reson Imaging, 2014, 32(5): 413-420.
[36]
Suo S, Chen X, Ji X, et al. Investigation of the non-Gaussian water diffusion properties in bladder cancer using diffusion kurtosis imaging: a preliminary study. J Comput Assist Tomogr, 2015, 2(39): 281-285.

PREV Persistent trigeminal artery and aneurysm accompanying with Alzheimer,s disease: a case report
NEXT Progress of resting-state functional magnetic resonance imaging in bipolar disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn