Share:
Share this content in WeChat
X
Review
Current status and progress in magnetic resonance vessel wall imaging
LI Yun-duo  ZHOU Ze-chen  LI Rui  YUAN Chun 

DOI:10.12015/issn.1674-8034.2016.02.012.


[Abstract] MR vessel wall imaging (MRVWI) acquires the information of vessel wall by suppressing the signal of flowing blood in lumen area. MRVWI techniques can visualize vessel wall directly and evaluate plaque vulnerability by measuring morphology and components of plaque. The main target of MRVWI techniques is to suppress the signal of the flowing blood. In this survey, we will briefly review the current status and progress in MRVWI techniques.
[Keywords] Magnetic resonance imaging;Cardiovascular diseases;Atherosclerotic plaque

LI Yun-duo Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing 100084, China

ZHOU Ze-chen Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing 100084, China

LI Rui* Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing 100084, China

YUAN Chun Department of Radiology University of Washington, Box 357115, 1959 NE Pacific Ave, Seattle, WA 98195, USA

*Correspondence to: Li R, E-mail: leerui@tsinghua.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of Fund Project of Beijing Municipal Science and Technology Commission No. Z131100005213001
Received  2015-10-29
Accepted  2015-12-07
DOI: 10.12015/issn.1674-8034.2016.02.012
DOI:10.12015/issn.1674-8034.2016.02.012.

[1]
Yuan C, Kerwin WS, Yarnykh VL, et al. MRI of atherosclerosis in clinical trials. NMR Biomed, 2006, 19(6): 636-654.
[2]
Edelman RR, Atkinson DJ, Silver MS, et al. Frodo pulse sequences: a new means of eliminating motion, flow, and wraparound artifacts. Radiology, 1988, 166(1): 231-236.
[3]
Felmlee JP, Ehman RL. Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology, 1987, 164(2): 559-564.
[4]
Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology, 1991, 181(3): 655-660.
[5]
Song HK, Wright AC, Wolf RL, et al. Multislice double inversion pulse sequence for efficient black-blood MRI. Magn Reson Med, 2002, 47(3): 616-620.
[6]
Yarnykh VL, Yuan C. Multislice double inversion-recovery black-blood imaging with simultaneous slice reinversion. J Magn Reson Imaging, 2003, 17(4): 478-483.
[7]
Yarnykh VL, Yuan C. T1-insensitive flow suppression using quadruple inversion-recovery. Magn Reson Med, 2002, 48(5): 899-905.
[8]
Koktzoglou I, Li D. Diffusion-prepared segmented steady-state free precession: application to 3D black-blood cardiovascular magnetic resonance of the thoracic aorta and carotid artery walls. J Cardiovasc Magn Reson, 2007, 9(1): 33-42.
[9]
Wang J, Yarnykh VL, Hatsukami T, et al. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med, 2007, 58(5): 973-981.
[10]
Wang J, Yarnykh VL, Yuan C. Enhanced image quality in black-blood MRI using the improved motion-sensitized driven-equilibrium (iMSDE) sequence. J Magn Reson Imaging, 2010, 31(5): 1256-1263.
[11]
Balu N, Yarnykh VL, Chu B, et al. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med, 2011, 65(3): 627-637.
[12]
Obara M, Kuroda K, Wang J, et al. Comparison between two types of improved motion-sensitized driven-equilibrium (iMSDE) for intracranial black-blood imaging at 3.0 tesla. J Magn Reson Imaging, 2014, 40(4): 824-831.
[13]
Liu CY, Bley TA, Wieben O, et al. Flow-independent T2-prepared inversion recovery black-blood MR imaging. J Magn Reson Imaging, 2010, 31(1): 248-254.
[14]
Kawaji K, Nguyen TD, Zou Z, et al. Three-dimensional flow-independent balanced steady-state free precession vessel wall MRI of the popliteal artery: preliminary experience and comparison with flow-dependent black-blood techniques. J Magn Reson Imaging, 2011, 34(3): 696-701.
[15]
Xie J, Bi X, Fan Z, et al. 3D flow-independent peripheral vessel wall imaging using T2-prepared phase-sensitive inversion-recovery steady-state free precession. J Magn Reson Imaging, 2010, 32(2): 399-408.
[16]
Li L, Miller KL, Jezzard P. DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med, 2012, 68(5): 1423-1438.
[17]
Li L, Chai JT, Biasiolli L, et al. Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging. Radiology, 2014, 273(2): 560-569.
[18]
Li L, Kong Y, Zaitsu Y, et al. Structural imaging of the cervical spinal cord with suppressed CSF signal using DANTE pulse trains. Magn Reson Med, 2015, 74(4): 971-977.
[19]
Wang JN, Helle M, Zhou ZC, et al. Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magn Reson Med, 2015, 13(3): 25667
[20]
Mugler JP, Brookeman JR. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med, 1990, 15(1): 152-157.
[21]
Moody AR, Pollock JG, O'Connor AR, et al. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. Radiology, 1998, 209(2): 349-355.
[22]
Wang J, Ferguson MS, Balu N, et al. Improved carotid intraplaque hemorrhage imaging using a slab-selective phase-sensitive inversion-recovery (SPI) sequence. Magn Reson Med, 2010, 64(5): 1332-1340.
[23]
Wang J, Börnert P, Zhao H, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation. Magn Reson Med, 2013, 69(2): 337-345.
[24]
Hennig J, Weigel M, Scheffler K. Calculation of flip angles for echo trains with predefined amplitudes with the extended phase graph (EPG)-algorithm: principles and applications to hyperecho and TRAPS sequences. Magn Reson Med, 2004, 51(1): 68-80.
[25]
Busse RF, Hariharan H, Vu A, et al. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med, 2006, 55(5): 1030-1037.
[26]
Park J, Mugler J, Horger W, et al. Optimized T1-weighted contrast for single-slab 3D turbo spin-echo imaging with long echo trains: application to whole-brain imaging. Magn Reson Med, 2007, 58(5): 982-992.
[27]
Storey P, Atanasova IP, Lim RP, et al. Tailoring the flow sensitivity of fast spin-echo sequences for noncontrast peripheral MR angiography. Magn Reson Med, 2010, 64(4): 1098-1108.
[28]
Busse RF. Flow sensitivity of CPMG sequences with variable flip refocusing and implications for CSF signal uniformity in 3D-FSE imaging. In Proceedings of the 14th Annual Meeting of ISMRM 2006, 2430.
[29]
Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging, 2010, 31(3): 645-654.
[30]
Mihai G, Chung YC, Merchant A, et al. T1-weighted-SPACE dark blood whole body magnetic resonance angiography (DB-WBMRA): initial experience. J Magn Reson Imaging, 2010, 31(2): 502-509.
[31]
Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 T esla. J Magn Reson Imaging, 2011, 34(1): 22-30.
[32]
Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology, 2014, 271(2): 534-542.
[33]
Kerwin WS, Canton G. Advanced techniques for MRI of atherosclerotic plaque. J Magn Reson Imaging, 2009, 20(4): 217-225.
[34]
Kerwin WS. Carotid artery disease and stroke: assessing risk with vessel wall MRI. ISRN Cardiol, 2012, 2012(2012): 180710.
[35]
Kerwin WS, Hatsukami T, Yuan C, et al. MRI of carotid atherosclerosis. AJR Am J Roentgenol, 2013, 200(3): 304-313.
[36]
Bodle JD, Feldmann E, Swartz RH, et al. High-resolution magnetic resonance imaging: an emerging tool for evaluating intracranial arterial disease. Stroke, 2013, 44(1): 287-292.
[37]
Ryu CW, Kwak HS, Jahng GH, et al. High-resolution MRI of intracranial atherosclerotic disease. Neurointervention, 2014, 9(1): 9-20.
[38]
Xie Y, Yang Q, Xie G, et al. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med, 2015, 17(1): 1-2.
[39]
Xu WH, Li ML, Gao S, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis, 2010, 212(2): 507-511.
[40]
Li ML, Xu WH, Song L, et al. Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3 T. Atherosclerosis, 2009, 204(2): 447-452.
[41]
Fayad Z, Fuster V, Fallon J, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation, 2000, 102(5): 506-510.
[42]
Botnar R, Stuber M, Kissinger K, et al. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation, 2000, 102(21): 2582-2597.
[43]
Botnar R, Kim W, Bornert P, et al. 3D coronary vessel wall imaging utilising a local inversion technique with spiral image acquisition. Magn Reson Med, 2001, 46(5): 848-854.
[44]
Katoh M, Spuentrup E, Buecker A, et al. MRI of coronary vessel walls using radial k-space sampling and steady state free rpecession imaging. AJR Am J Roentgenol, 2006, 186(6): s401-s406.
[45]
Kim W, Stuber M, Bornert P, et al. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with non-significant coronary artery disease. Circulation, 2002, 106(3): 296-299.
[46]
Fernandes JL, Serrano CV Jr, Blotta MH, et al. Regression of coronary artery outward remodeling in patients with non-ST-segment acute coronary syndromes: a longitudinal study using noninvasive magnetic resonance imaging. Am Heart J, 2006, 152(6): 1123-1132.
[47]
Miao C, Chen S, Macedo R, et al. Positive remodelling of the coronary arteries detected by MRI in an asymptomatic population: the multi-ethnic study of atherosclerosis (MESA). J Am Coll Cardiol, 2009, 53(18): 1708-1715.
[48]
Terashima M, Nguyen P, Rubin G, et al. Right coronary wall CMR in the older asymptomatic advance cohort: positive remodelling and associations with type 2 diabetes. J Cardiovasc Magn Reson, 2010, 12(1): 75-81.
[49]
Kim W, Astrup S, Stuber M, et al. Subclinical coronary and aortic atherosclerosis detected by magnetic resonance imaging in type 1 diabetes with and without diabetic nephropathy. Circulation, 2007, 115(2): 228-235.
[50]
Scott A, Keegan J, Mohiaddin R, et al. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction. J Magn Reson Imaging, 2011, 34(4): 824-830.
[51]
Finn A, Nakona M, Narula J, et al. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol, 2010, 30(7): 1282-1292.
[52]
Maintz D, Ozgun M, Hoffmeier A, et al. Selective coronary plaque visualisation and differentiation by contrast-enhanced inversion prepared MRI. Eur Heart J. 2006, 27(14): 1732-1736.
[53]
Kawasaki T, Koga S, Noguchi T, et al. Characterization of hyper- intense plaque with noncontrast T1-weighted cardiac magnetic resonance coronary plaque imaging: comparison with multislice computed tomography and intravascular ultrasound. JACC Cardiovasc Imaging, 2009, 2(6): 720-728.
[54]
Noguchi T, Kawasaki T, Tanaka A, et al. High-intensity signals in coronary plaques on non-contrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events. J Am Coll Cardiol, 2014, 63(10): 989-999.
[55]
Yeon S, Sabir A, Clouse M, et al. Delayed-enhancement cardio-vascular magnetic resonance coronary artery wall imaging: comparison with multi-slice computed tomography and quantitative coronary angiography. J Am Coll Cardiol, 2007, 50(5): 441-447.
[56]
Ibrahim T, Makowski M, Jankauskas A, et al. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovasc Imaging, 2009, 2(5): 580-588.
[57]
Schneeweis C, Schnackenburg B, Stuber M, et al. Delayed contrast-enhanced MRI of the coronary artery wall in takayasu arteritis. PLoS One, 2012, 7(12): e50655.
[58]
Hussain T, Fenton M, Peel SA, et al. Detection and grading of coronary allograft vasculopathy in children with contrast-enhanced magnetic resonance imaging of the coronary vessel wall. Circ Cardiovasc Imaging, 2013, 6(1): 91-98.
[59]
Abd-Elmoniem K, Gharib A, Pettigrew R. Coronary vessel wall 3 T MR imaging with time-resolved acquisition of phase-sensitive dual inversion recovery (TRAPD) technique: initial results in patients with risk factors for coronary artery disease. Radiology, 2012, 265(3): 715-723.
[60]
Abd-Elmoniem K, Weiss R, Stuber M. Phase-sensitive black-blood coronary vessel wall imaging. Magn Reson Med, 2010, 63(4): 1021-1030.
[61]
Fan Z, Yu W, Xie Y, et al. Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility. J Cardiovasc Magn Reson, 2014, 16(1): 53-64.
[62]
Zhou Z, Li R, Zhao X, et al. Evaluation of 3D multi-contrast joint intra- and extracranial vessel wall cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2015, 17(1): 41-51.
[63]
Makhijani MK, Balu N, Yamada K, et al. Accelerated 3D MERGE carotid imaging using compressed sensing with a hidden markov tree model. Magn Reson Med, 2012, 36(5): 1194-1202.
[64]
Li B, Dong L, Chen B, et al. Turbo fast three-dimensional carotid artery black-blood MRI by combining three-dimensional MERGE sequence with compressed sensing. Magn Reson Med, 2013, 70(5): 1347-1352.
[65]
Li B, Li H, Li J, et al. Relaxation enhanced compressed sensing three-dimensional black-blood vessel wall MR imaging: preliminary studies. Magn Reson Imaging, 2015, 33(7): 932-938.
[66]
Gong E, Huang F, Ying K, et al. Promise: parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using sharable information. Magn Reson Med, 2015, 73(2): 523-535.
[67]
Zhou Z, Wang J, Balu N, et al. STEP: self-supporting tailored k-space estimation for parallel imaging reconstruction. Magn Reson Med, 2015, 11(3): 25663.
[68]
苑纯, 赵锡海. 易损斑块磁共振成像:共识与挑战. 磁共振成像, 2010, 1(6): 429-431.
[69]
张兆琪, 贺毅, 戴沁怡, 等. 磁共振黑血序列冠状动脉管壁成像评价粥样硬化斑块初步研究结果:与血管内超声对照研究. 磁共振成像, 2010, 1(2): 94-97.

PREV Magnetic resonance imaging in diagnosis of ovarian follicular membrane cell tumor: case report
NEXT Research progress on lossless compression technology for medical images
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn