Share:
Share this content in WeChat
X
Review
The application of UTE-MRI in cortical bone imaging
CHEN Min  YUAN Hui-shu 

DOI:10.12015/issn.1674-8034.2016.02.014.


[Abstract] The prevalence of osteoporosis(OP) is developing with the aging of the society. As the most serious complication of OP, fragility fractures bring the patients heavy economic and disease burdens. Instead of focusing on the change of trabecular bone, recently, more researchers realize the important role of cortical bone in fragility fractures. UTE-MRI is a newly emerging MRI sequence which makes the qualitative and quantitative imaging of cortical bone possible in vivo. Some studies have proved the feasibility of the application of UTE-MRI in fracture imaging, cortical water quantification, cortical porosity measurement, bone perfusion imaging, etc, both in vitro and in vivo. The aim of this review is to briefly introduce this new MRI sequence and make a summary of its applications in cortical bone imaging.
[Keywords] Ultra-short echo time;Magnetic resonance imaing;Cortical bone;Osteoporosis

CHEN Min Department of Radiology, Peking University Third Hospital, Beijing 100191, China

YUAN Hui-shu* Department of Radiology, Peking University Third Hospital, Beijing 100191, China

*Correspondence to: Yuan HS, E-mail: huishuy@bjmu.edu.cn

Conflicts of interest   None.

Received  2015-12-10
Accepted  2016-01-08
DOI: 10.12015/issn.1674-8034.2016.02.014
DOI:10.12015/issn.1674-8034.2016.02.014.

[1]
中华人民共和国民政部. 中国民政统计年鉴2015(中国社会服务统计资料). 北京: 中国统计出版社, 2015: 21-24.
[2]
Lin X, Xiong D, Peng YQ, et al. Epidemiology and management of osteoporosis in the People's Republic of China: current perspectives. Clin Interv Aging, 2015, 10: 1017-1033.
[3]
Genant HK, Cooper C, Poor G, et al. Interim report and recommendations of the World Health Organization task-force for osteoporosis. Osteoporos Int, 1999, 10(4): 259-264.
[4]
Holzer G, von Skrbensky G, Holzer LA, et al. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res, 2009, 24(3): 468-474.
[5]
Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing, 2006, 35(2): 27-31.
[6]
Zebaze RM, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet, 2010, 375(9727): 1729-1736.
[7]
De Laet CE, van Hout BA, Burger H, et al. Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ, 1997, 315(7102): 221-225.
[8]
Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed, 2006, 19(7): 765-780.
[9]
Holmes JE, Bydder GM. MR imaging with ultrashort TE (UTE) pulse sequences: Basic principles. Radiography, 2005, 11(3): 163-174.
[10]
Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed, 2013, 26(5): 489-506.
[11]
Rad H, Lam S, Magland J, et al. Quantifying cortical bone water in vivo by three-dimensional ultra-short echo-time MRI. NMR Biomed, 2011, 24(7): 855-864.
[12]
Du J, Carl M, Bydder M, et al. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. Journal of Magnetic Resonance, 2010, 207(2): 304-311.
[13]
Rajapakse CS, Bashoor-Zadeh M, Li C, et al. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology, 2015, 276(2): 526-535.
[14]
Wu H, Zhong YM, Nie QM, et al. Feasibility of three-dimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures. Eur Radiol, 2016, 26(1): 138-146.
[15]
马立恒, 孟悛非, 陈应明. MRI三维超短回波时间双回波脉冲序列在骨与关节成像中的初步应用. 中华放射学杂志, 2008, 42(7): 752-757.
[16]
潘希敏, 胡美玉, 江波. 腰椎软骨终板的MR三维超短回波时间T2*mapping定量评价. 磁共振成像, 2014, 5(2): 111-114.
[17]
Reichert IL, Robson MD, Gatehouse PD, et al. Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging, 2005, 23(5): 611-618.
[18]
Robson MD, Gatehouse PD, Bydder M, et al. Magnetic resonance: an introduction to Ultrashort TE (UTE) imaging. Journal of Computer Assisted Tomography, 2003, 27(6): 825-846.
[19]
Techawiboonwong A, Song HK, Leonard MB, et al. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology, 2008, 248(3): 824-833.
[20]
Horch RA, Nyman JS, Gochberg DF, et al. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med, 2010, 64(3): 680-687.
[21]
Ong HH, Wright AC, Wehrli FW. Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res, 2012, 27(12): 2573-2581.
[22]
Qingwen N, Jeffry SN, Xiaodu W, et al. Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance. Measurement Science and Technology, 2007, 18(3): 715.
[23]
Li C, Seifert AC, Rad HS, et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology, 2014, 272(3): 796-806.
[24]
Techawiboonwong A, Song HK, Wehrli FW. In vivo MRI of submillisecond T2 species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water. NMR in Biomedicine, 2008, 21(1): 59-70.
[25]
Fernández-Seara MA, Wehrli SL, Wehrli FW. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophysical Journal, 2002, 82(1): 522-529.
[26]
Biswas R, Bae W, Diaz E, et al. Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone, 2012, 50(3): 749-755.
[27]
Bae WC, Chen PC, Chung CB, et al. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res, 2012, 27(4): 848-857.
[28]
Manhard MK, Horch RA, Gochberg DF, et al. In vivo quantitative MR imaging of bound and pore water in cortical bone. Radiology, 2015, 277(1): 221-229.
[29]
Manhard MK, Horch RA, Harkins KD, et al. Validation of quantitative bound-and pore-water imaging in cortical bone. Magnetic Resonance in Medicine, 2014, 71(6): 2166-2171.
[30]
Allen MR, Territo PR, Lin C, et al. In vivo UTE-MRI reveals positive effects of raloxifene on skeletal-bound water in skeletally mature beagle dogs. Journal of Bone and Mineral Research, 2015, 30(8): 1441-1444.
[31]
Chen H, Zhou X, Shoumura S, et al. Age and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int, 2010, 21(4): 627-636.
[32]
McCalden RW, McGeough JA, Barker MB, et al. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am, 1993, 75(8): 1193-1205.
[33]
Bala Y, Zebaze R, Ghasem-Zadeh A, et al. Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. Journal of Bone and Mineral Research, 2014, 29(6): 1356-1362.
[34]
Sundh D, Mellström D, Nilsson M, et al. Increased cortical porosity in older men with fracture. Journal of Bone and Mineral Research, 2015, 30(9): 1692-1700.
[35]
Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop Relat Res, 1978, 135(135): 192-217.
[36]
Wu Y, Chesler DA, Glimcher MJ, et al. Multinuclear solid-state three-dimensional MRI of bone and synthetic calcium phosphates. Proc Natl Acad Sci USA, 1999, 96(4): 1574-1578.
[37]
Robson MD, Gatehouse PD, Bydder GM, et al. Human imaging of phosphorus in cortical and trabecular bone in vivo. Magn Reson Med, 2004, 51(5): 888-892.
[38]
Anumula S, Wehrli SL, Magland J, et al. Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone, 2010, 46(5): 1391-1399.
[39]
Hauge EM, Qvesel D, Eriksen EF, et al. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res, 2001, 16(9): 1575-1582.
[40]
Wang YX, Griffith JF, Kwok AW, et al. Reduced bone perfusion in proximal femur of subjects with decreased bone mineral density preferentially affects the femoral neck. Bone, 2009, 45(4): 711-715.
[41]
Girard OM, Du J. Preliminary results on bone perfusion measurement using dynamic contrast enhanced ultra-short TE imaging. Proc Intl Soc Mag Reson Med, 2011(19): 3210.
[42]
Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction MR imaging. Radiology, 1991, 179(3): 777-781.
[43]
袁慧书, 刘丽思. 肌骨关节系统磁共振成像临床应用及进展.磁共振成像, 2015, 6(2): 81-85.
[44]
徐文坚, 聂佩. 磁共振成像在骨关节系统疾病应用及进展. 磁共振成像, 2014, 5(S1): 51-55.
[45]
马立恒, 孟悛非, 陈应明. 影响短T2成分MR三维超短回波时间双回波序列成像质量因素的探讨. 中华放射学杂志, 2011, 45(4): 388-391.
[46]
马立恒, 陈应明, 张朝晖. 正常兔膝关节的三维UTE动态增强MRI实验研究. 放射学实践, 2014, 29(7): 766-769.

PREV Research progress on lossless compression technology for medical images
NEXT An imaging measurement study on the diffusion tensor tractography of white matter fibers in the brains of schizophrenia patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn