Share:
Share this content in WeChat
X
Review
A review of the application of MRI techniques in cognitive impairment after traumatic brain injury
WANG Ming-liang  LI Wen-bin 

DOI:10.12015/issn.1674-8034.2016.04.013.


[Abstract] Traumatic brain injury(TBI) is closely related to a series of complications, among which cognitive impairment is a most common and long-lasting one. Currently, the diagnosis of cognitive impairment after TBI remained mostly by using a neuropsychological method while lacking the evidence of objective brain structure changes, thus affecting the treatment plan and prognosis assessment. In recent years, with the development of new MRI sequence imaging technology, a variety of new MRI sequences can clearly show the micro-structure of the whole brain and brain network. In this review, we mainly summarize the research progress of new MRI sequence in evaluation of cognitive impairment after TBI.
[Keywords] Brain injury, traumatic;Cognitive impairment;Magnetic resonance imaging

WANG Ming-liang Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China

LI Wen-bin* Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China; Imaging center, Kashgar Prefecture Second People’s Hospital, Kashgar 844000, China

*Correspondence to: Li WB, E-mail: liwenbin@sh163.net

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of Project of the National Natural Science Foundation of China No. 81271540
Received  2016-02-03
Accepted  2016-03-23
DOI: 10.12015/issn.1674-8034.2016.04.013
DOI:10.12015/issn.1674-8034.2016.04.013.

[1]
Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury. J Head Trauma Rehabil, 2010, 25(2): 72-80.
[2]
童武松, 郭义君, 杨文进, 等. 急性创伤性脑损伤后早期认知功能障碍特征及影响因素分析. 中华创伤杂志, 2015, 31(2): 128-132.
[3]
Gardner RC, Yaffe K. Traumatic brain injury may increase risk of young onset dementia. Ann Neurol, 2014, 75(3): 339-341.
[4]
Gardner RC, Burke JF, Nettiksimmons J, et al. Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity. JAMA Neurol, 2014, 71(12): 1490-1497.
[5]
Chung WS, Welsh CA, Barres BA, et al. Do glia drive synaptic and cognitive impairment in disease?. Nat Neurosci, 2015, 18(11): 1539-1545.
[6]
Xiong Y, Mahmood A, Chopp M. Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs, 2010, 11(3): 298-308.
[7]
Deichmann R, Good CD, Josephs O, et al. Optimization of 3-D MP-RAGE sequences for structural brain imaging. Neuroimage, 2000, 12(1): 112-127.
[8]
Zagorchev L, Meyer C, Stehle T, et al. Differences in regional brain volumes two months and one year after mild traumatic brain injury. J Neurotrauma, 2016, 33(1): 29-34.
[9]
Palacios EM, Sala-Llonch R, Junque C, et al. Long-term declarative memory deficits in diffuse TBI: correlations with cortical thickness, white matter integrity and hippocampal volume. Cortex, 2013, 49(3): 646-657.
[10]
Munivenkatappa A, Devi BI, Shukla DP, et al. Role of the thalamus in natural recovery of cognitive impairment in patients with mild traumatic brain injury. Brain Inj, 2015, 29(30): 1-5.
[11]
Di Giovanni S, Movsesyan V, Ahmed F, et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A, 2005, 102(23): 8333-8338.
[12]
Ajao DO, Pop V, Kamper JE, et al. Traumatic brain injury in young rats leads to progressive behavioral deficits coincident with altered tissue properties in adulthood. J Neurotrauma, 2012, 29(11): 2060-2074.
[13]
Nucifora PG, Verma R, Lee SK, et al. Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology, 2007, 245(2): 367-384.
[14]
朱慧玲, 丁建平, 王付言, 等. 轻度创伤性脑损伤的扩散张量成像研究. 磁共振成像, 2014, (6): 451-454.
[15]
Arenth PM, Russell KC, Scanlon JM, et al. Corpus callosum integrity and neuropsychological performance after traumatic brain injury: a diffusion tensor imaging study. J Head Trauma Rehabil, 2014, 29(2): E1-E10.
[16]
Laitinen T, Sierra A, Bolkvadze T, et al. Diffusion tensor imaging detects chronic microstructural changes in white and gray matter after traumatic brain injury in rat. Front Neurosci, 2015, 9(4): 128.
[17]
Prins ML, Hales A, Reger M, et al. Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Dev Neurosci, 2010, 32(5-6): 510-518.
[18]
Hui ES, Cheung MM, Qi L, et al. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage, 2008, 42(1): 122-134.
[19]
樊秋菊, 杨春华, 哈若水, 等. DKI与DTI技术对轻度脑外伤定量评估的研究. 临床放射学杂志, 2014, 33(7): 976-981.
[20]
Grossman EJ, Jensen JH, Babb JS, et al. Cognitive impairment in mild traumatic brain injury: a longitudinal diffusional kurtosis and perfusion imaging study. AJNR Am J Neuroradiol, 2013, 34(5): 951-957.
[21]
Stokum JA, Sours C, Zhuo J, et al. A longitudinal evaluation of diffusion kurtosis imaging in patients with mild traumatic brain injury. Brain Inj, 2015, 29(1): 47-57.
[22]
Zhuo J, Xu S, Proctor JL, et al. Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. Neuroimage, 2012, 59(1): 467-477.
[23]
Haacke EM, Mittal S, Wu Z, et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol, 2009, 30(1): 19-30.
[24]
张竞文, 唐兴, 伍建林, 等. 磁敏感加权成像与CT评价创伤性脑损伤. 中国医学影像技术, 2011, 27(2): 256-260.
[25]
Huang YL, Kuo YS, Tseng YC, et al. Susceptibility-weighted MRI in mild traumatic brain injury. Neurology, 2015, 84(6): 580-585.
[26]
Nisenbaum EJ, Novikov DS, Lui YW. The presence and role of iron in mild traumatic brain injury: an imaging perspective. J Neurotrauma, 2014, 31(4): 301-307.
[27]
Deibler AR, Pollock JM, Kraft RA, et al. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol, 2008, 29(7): 1228-1234.
[28]
黄荣慧, 陈长青. 3D ASL在急性轻度创伤性脑损伤中的应用.激光生物学报, 2013, 22(2): 174-179.
[29]
Kenney K, Amyot F, Haber M, et al. Cerebral Vascular Injury in Traumatic Brain Injury. Exp Neurol, 2016, 275(Pt 3): 353-366.
[30]
Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging, 1999, 10(3): 223-232.
[31]
Wei XE, Zhang YZ, Li YH, et al. Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study. J Neurotrauma, 2012, 29(14): 2413-2420.
[32]
Hay JR, Johnson VE, Young AM, et al. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol, 2015, 74(12): 1147-1157.
[33]
Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron, 2015, 85(2): 296-302.
[34]
Greicius MD, Supekar K, Menon V, et al. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex, 2009, 19(1): 72-78.
[35]
秦燕, 周顺科, 刘军. 多种MRI技术在轻型颅脑损伤中的应用研究进展. 磁共振成像, 2015, 6(3): 235-240.
[36]
Bonnelle V, Ham TE, Leech R, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A, 2012, 109(12): 4690-4695.
[37]
Bonnelle V, Leech R, Kinnunen KM, et al. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci, 2011, 31(38): 13442-13451.
[38]
Zhou Y, Milham MP, Lui YW, et al. Default-mode network disruption in mild traumatic brain injury. Radiology, 2012, 265(3): 882-892.

PREV MRI tracking study of SPIO labeled bone marrow stromal cells transplantation for treatment of lacunar stroke
NEXT Arrhythmogenic right ventricular cardiomyopathy:cardiovascular magnetic resonance update
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn