Share:
Share this content in WeChat
X
Review
The study progress of multi-mode MRI in the idiopathic epilepsy
PEI Chun-mei  GAO Yang  QIAO Peng-fei  NIU Guang-ming 

DOI:10.12015/issn.1674-8034.2016.06.013.


[Abstract] The idiopathic epilepsy is a common neurological disorder characterized by abnormal hyper-synchronization of neural activity. It is important to understand the essence for the diagnosis and treatment. In the recent years, with the rapid development of mutiple MRI, it has made great progresses in the level of morphological structure imaging, the metabolism, the function and the molecular imaging, which plays an important role in the location of epilepsy, the lateralization diagnosis and the assessment of the cerebral function for the preoperative and prognosis. This article mainly discusses the new technology progresses of mutiple MRI in the idiopathicx epilepsy.
[Keywords] Idiopathic epilepsy;Magnetic resonance imaging, functional;Susceptibility weighted imaging;Diffiusion tensor imaging;Diffusion kurtosis imaging

PEI Chun-mei School of Graduate, Inner Mongolia Medical University, Hohhot 010020, China; Department of MRI, the First Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

GAO Yang Department of MRI, the First Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

QIAO Peng-fei Department of MRI, the First Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

NIU Guang-ming* Department of MRI, the First Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

*Correspondence to: Niu GM, E-mail: cjr.niuguangming@vip.163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of science and technology project of Inner Mongolia Autonomous Region No. 20150032
Received  2016-01-21
Accepted  2016-03-04
DOI: 10.12015/issn.1674-8034.2016.06.013
DOI:10.12015/issn.1674-8034.2016.06.013.

[1]
Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 2014, 55(4): 475-482.
[2]
谭启富,李龄,吴承远. 癫痫外科学. 第二版. 北京: 人民卫生出版社, 2012: 143-171.
[3]
Hildebrand MS, Dahl HH, Damiano JA, et al. Recent advances in the molecular genetics of epilepsy. J Med Genet, 2013, 50(5): 271-279.
[4]
Kalamangalam GP, Nelson JT, Ellmore TM, et al. Oxygenenhanced MRI in temporal lobe epilepsy:Diagnosis and Lateralization. Epilepsy Res, 2012, 98(1): 50-61.
[5]
鹿丽,陈自谦,杨朋范, 等. 右侧颞叶癫痫发作间期静息态脑功能磁共振成像研究. 功能与分子医学影像学(电子版), 2015, 4(2): 651-656.
[6]
乔鹏飞,牛广明,韩晓东, 等. 原发性复杂部分性发作癫痫的脑静息态MRI研究. 中华临床医师杂志(电子版), 2013, 7(1): 75-78.
[7]
Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci USI, 2001, 98(2): 676-682.
[8]
吴寒,张志强,许强, 等. 间期痫样发放对内侧颞叶癫痫脑网络的影响. 磁共振成像, 2015, 6(11): 801-806.
[9]
Morgan VL, Sonmezturk HH, Gore JC, et al. Lateralization of temporal lobe epilepsy using resting functional magnetic resonance imaging connectivity of hippocampal networks. Epilepsia, 2012, 53(9): 1628-1635.
[10]
Zhang Z, Lu G, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp, 2010, 31(12): 1851-1861.
[11]
Liu H, Buckner RL, Talukdar T, et al. Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J Neurosurg, 2009, 111(4): 746-754.
[12]
Mccormick C, Quraan M, Cohn M, et al. Default mode network connectivity indicates episodic memory capacity in mesial temporal lobe epilepsy. Epilepsia, 2013, 54(5): 809-818.
[13]
D’Arcy RC, Gawryluk JR, Beyea SG, et al. Tracking cognitive changes in new-onset epilepsy: functional imaging challenges. Epilepsia, 2011, 52(4): 43-46.
[14]
Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging, 2005, 23(1): 1-25.
[15]
Sehfal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging, 2005, 22(4): 439-450.
[16]
Glick SD, Ross DA, Hough LB. Lateral asymmetry of neuro transmitters in human brain. Brain Res, 1982, 234(1): 53-63.
[17]
Tucker DM, Williamson PA. Asymmetric neural control systems in human self-regulation. Psychol Rev, 1984, 91(2): 185-215.
[18]
Xu X, Wang Q, Zhang M. Age,gender,and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage, 2008, 40(1): 35-42.
[19]
Bouilleret V, Semah F, Chassoux F, et al. Basal ganglia involvement in temporal lobe epilepsy: a functional and morphologic study. Neurology, 2008, 71(22): 1840-1841.
[20]
Theodore WH. Expanding the geography of epilepsy: imaging evidence for Basal Ganglia involvement. Epilepsy Curr, 2006, 6(2): 40-41.
[21]
Zhang Z, Liao W, Bernhardt B, et al. Brain iron redistribution in mesial temporal lobe epilepsy: a susceptibility-weighted magnetic resonance imaging study. BMC Neurosci, 2014, 21(15): 117-128.
[22]
Hunter JV, Wilde EA, Tong KA, et al. Emerging imaging tools for use with traumatic brain injury research. J Neurotrauma, 2012, 29(4): 654-671.
[23]
Aellen J, Abela E, Buerki SE, et al. Focal hemodynamic patterns of status epilepticus dectected by susceptibility weighted imaging(SWI). Eur Radiol, 2014, 24(11): 2980-2988.
[24]
李恩中,高家红,卢光明, 等. 神经功能成像及其在重大脑疾病中的应用. 中国科学:生命科学, 2015, 45(3): 237-246.
[25]
唐守现,戴建平. 扩散张量成像和磁敏感加权成像在阿尔茨海默病海马的研究进展. 磁共振成像, 2015, 6(9): 699-703.
[26]
张力新,王伟伟,赵欣, 等. 基于扩散磁共振成像的大脑白质微结构检测研究进展. 纳米技术与精密工程, 2015, 13(4): 276-286.
[27]
Anderson AW, Zhong J, Petroff OA, et al. Effects of osmotically driven cell volume changes on diffusion-weighted imaging of the rat optic nerve. Magn Reson Med, 1996, 35(2): 162-167.
[28]
Sevick RJ, Kanda F, Mintorovitch J, et al. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging. Radiology, 1992, 185(3): 687-690.
[29]
Ahmadi ME, Hagler DJ, Mcdonald CR, et al. Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. AJNR Am J Neuroradiol, 2009, 30(9): 1740-1747.
[30]
Concha L, Kim H, Bernasconi A, et al. Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology, 2012, 79(5): 455-462.
[31]
Hui ES, Cheung MM, Qi L, et al. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage, 2008, 42(1): 122-134.
[32]
Lee CY, Tbesh A, Spampinato MV, et al. Diffusion Kurtosis imaging reveals a distinctive pattern of microstructural alternations in idiopathic generalized epiepsy. Acta Neurol Scand, 2014, 130(3): 148-155.
[33]
Zhang Y, Yan X, Gao Y, et al. A preliminary study of epilepsy in children using diffusional kurtosis imaging. Clin Neuroradiol, 2013, 23(4): 293-300.
[34]
Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology, 2012, 163(2): 492-501.
[35]
Szczepankiewicz F, Latt J, Wirestam R, et al. Variability in diffusion kurtosis imaging:impact on study design,statistical power and interpretation. Neuroimage, 2013, 76(1): 145-154.

PREV Typical imaging finding of ischiofemoral impingement syndrome
NEXT Progress in research application of magnetic resonance in rapid eye movement sleep behavior disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn