Share:
Share this content in WeChat
X
Review
Principles and reconstruction methods of spatiotemporally encoded single-shot MRI
ZHANG Ting  CAI Cong-bo  CAI Shu-hui  CHEN Zhong 

DOI:10.12015/issn.1674-8034.2016.07.015.


[Abstract] In recent years, single-shotmagnetic resonance imaging (MRI) has been widely used in biomedicine, such as diffusion imaging, functional imaging, and real-time three-dimensional imaging, owing to its excellent temporal resolution. Among single-shot MRI approaches echo-planar imaging (EPI) stands out most. However, EPI still faces several limitations, particularly as a result of field inhomogeneity and of chemical shift effects that can become severein high fields. A novel single-shot MRI method was proposed based on spatiotemporal encoding, which provides a way to effectively alleviate the effects of field inhomogeneity and chemical shift while retaining high temporal-resolution character. In this work, we will review the principles and characters of spatiotemporally encoded MRI, and introduce the corresponding super-resolved reconstruction methods. In addition, we will present some major applications of spatiotemporally encoded MRI in biomedicine.
[Keywords] Singleshot;Spatiotemporal encoding;Super-resolved reconstruction

ZHANG Ting Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China

CAI Cong-bo Department of Communication Engineering, Xiamen University, Xiamen 361005, China

CAI Shu-hui* Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China

CHEN Zhong Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China

*Correspondence to: Cai SH, E-mail: shcai@xmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was supported by the National Natural Science Foundation of China under Grants No. 11474236, 11275161, 81171331 Natural Science Foundation of Fujian Province under grant No.2014J01247
Received  2016-03-30
Accepted  2016-04-25
DOI: 10.12015/issn.1674-8034.2016.07.015
DOI:10.12015/issn.1674-8034.2016.07.015.

[1]
Tsao J. Ultrafast imaging:principles, pitfalls, solutions, and applications. J Magn Reson Imaging, 2010, 32(2): 252-266.
[2]
Hong X, To XV, Teh I, et al. Evaluation of EPI distortion correction methods for quantitative MRI of the brain at high magnetic field. Magn Reson Imaging, 2015, 33(9): 1098-1105.
[3]
Frindel C, Robini M, Croisille P, et al. Comparison of regularization methods for human cardiac diffusion tensor MRI. Med Image Anal, 2009, 13(3): 405-418.
[4]
deCharms RC. Applications of real-time fMRI. Nat Rev, 2008, 9(9): 720-729.
[5]
Cernicanu A, Lepetit-Coiffe M, Roland J, et al. Validation of fast MR thermometry at 1.5 T with gradient-echo echo planar imaging sequences: phantom and clinical feasibility studies. NMR Biomed, 2008, 21(8): 849-858.
[6]
Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys, 2001, 10(3): 55-58.
[7]
Roopchansingh V, Cox RW, Jesmanowicz A, et al. Single-shot magnetic field mapping embedded in echo-planar time-course imaging. Magn Reson Med, 2003, 50(4): 839-843.
[8]
Schmitt F, Stehling MK, Turner R. Echo-planar imaging-theory, technique and applications. Berlin: Springer, 1998: 306-375.
[9]
Chen NK, Oshio K, Panych LP. Application of k-space energy spectrum analysis to susceptibility field mapping and distortion correction in gradient-echo EPI. Neuroimage, 2006, 31(2): 609-622.
[10]
Chen NK, Wyrwicz AM. Optimized distortion correction technique for echo planar imaging. Magn Reson Med, 2001, 45(3): 525-528.
[11]
Shrot Y, Frydman L. Spatially encoded NMR and the acquisition of 2D magnetic resonance images within a single scan. J Magn Reson, 2005, 172(2): 179-190.
[12]
Tal A, Frydman L. Spatial encoding and the single-scan acquisition of high definition MR images in inhomogeneous fields. J Magn Reson, 2006, 182(2): 179-194.
[13]
Ben-Eliezer N, Irani M, Frydman L. Super-resolved spatially encoded single-scan 2D MRI. Magn Reson Med, 2010, 63(6): 1594-1600.
[14]
Ben-Eliezer N, Shrot Y, Frydman L. High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods. Magn Reson Imaging, 2010, 28(1): 77-86.
[15]
Garwood M, DelaBarre L. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson, 2001, 153(2): 155-177.
[16]
Shapira B, Lupulescu A, Shrot Y, et al. Line shape considerations in ultrafast 2D NMR. J Magn Reson, 2004, 166(2): 152-163.
[17]
Tal A, Frydman L. Single-scan multidimensional magnetic resonance. Prog Nucl Magn Reson Spectrosc, 2010, 57(3): 241-292.
[18]
Chen Y, Li J, Qu XB, et al. Partial Fourier transform reconstruction for single-shot MRI with linear frequency-swept excitation. Magn Reson Med, 2013, 69(5): 1326-1336.
[19]
Cai CB, Dong JY, Cai SH, et al. An efficient de-convolution reconstruction method for spatiotemporal-encoding single-scan 2D MRI. J Magn Reson, 2013, 228: 136-147.
[20]
沈君.积极开展定量动态增强磁共振成像研究.磁共振成像, 2015, 6(8): 561-565.
[21]
Seginer A, Schmidt R, Leftin A, et al. Referenceless reconstruction of spatiotemporally encoded imaging data: principles and applications to real-time MRI. Magn Reson Med, 2014, 72(6): 1687-1695.
[22]
Behrens TE, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med, 2003, 50(5): 1077-1088.
[23]
Solomon E, Shemesh N, Frydman L. Diffusion weighted MRI by spatiotemporal encoding: analytical description and in vivo validations. J Magn Reson, 2013, 232: 76-86.
[24]
Solomon E, Nissan N, Furman-Haran E, et al. Overcoming limitations in diffusion-weighted MRI of breast by spatio-temporal encoding. Magn Reson Med, 2015, 73(6): 2163-2173.
[25]
Leftin A, Rosenberg JT, Solomon E, et al. Ultrafastin vivo diffusion imaging of stroke at 21.1 T by spatiotemporal encoding. Magn Reson Med, 2015, 73(4): 1483-1489.
[26]
Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev, 2007, 8(9): 700-711.
[27]
房俊芳,王倩,王滨,等.功能MRI揭示抑郁症脑结构及功能变化的应用与发展.磁共振成像, 2015, 6(1): 52-57.
[28]
Weiskopf N, Klose U, Birbaumer N, et al. Single-shot compensation of image optimization using multi-echo EPI distortions and BOLD contrast for real-time fMRI. Neuroimage, 2005, 24(4): 1068-1079.
[29]
朱礼涛,吴慧,朱朝喆.基于EPI方法的功能磁共振成像质量问题实例分析:主要成因与应对方案.磁共振成像, 2012, 3(2): 144-148.
[30]
Ben-Eliezer N, Goerke U, Ugurbil K, et al. Functional MRI using super-resolved spatiotemporal encoding. Magn Reson Imaging, 2012, 30(10): 1401-1408.
[31]
Schmidt R, Frydman L. Alleviating artifacts in 1H MRI thermometry by single scan spatiotemporal encoding. Magn Reson Mater Phys, 2013, 26(5): 477-490.

PREV The application research progress of DWI and DCE-MRI in ovarian tumors
NEXT The value of MR intravoxel incoherent motion diffusion weighted imaging in T stage and differentiated degree of rectal adenocarcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn