Share:
Share this content in WeChat
X
Review
Progresses of multimodal functional magnetic resonance imaging in assessment of brain default mode network damage in type 2 diabetes
WANG yang  WU Jian-lin 

DOI:10.12015/issn.1674-8034.2016.09.015.


[Abstract] Type 2 diabetes mellitus caused by insulin resistance is a metabolic disease characterized by high blood glucose. It affects central nervous system especially brain regions of default mode network. Recently, early detection and prognosis of default mode network damage by multimodal functional magnetic resonance imaging has become a research hotspot. This review focused on the mechanism and pathologic changes of type 2 diabetes brain damage and research progresses by multimodal functional magnetic resonance imaging.
[Keywords] Diabetes mellitus, Type 2;Default mode network;Magnetic resonance imaging

WANG yang Dalian Medical University, Dalian 116001, China; Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China

WU Jian-lin* Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China

*Correspondence to: Wu JL, E-mail: cjr.wujianlin@vip.163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This paper is funded by the National Natural Science Foundation of China No. 81371526
Received  2016-04-05
Accepted  2016-05-02
DOI: 10.12015/issn.1674-8034.2016.09.015
DOI:10.12015/issn.1674-8034.2016.09.015.

[1]
中华医学会糖尿病学分会.中国2型糖尿病防治指南(2013年版).中国糖尿病杂志, 2014, 8(22): 2-42.
[2]
Lee JH, Choi Y, Jun C, et al. Neurocognitive changes and their neural correlates in patients with type 2 diabetes mellitus. Endocrinol Metab (Seoul), 2014, 29(2): 112-121.
[3]
Raichle ME, Macleod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci USA, 2001, 98(2): 676-682.
[4]
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci, 2008, 1124(1): 1-38.
[5]
Raichle ME. The brain's dark energy. Sci Am, 2010, 302(3): 44-49.
[6]
Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature, 1978,272(5656): 827-829.
[7]
Baskin DG, Woods SC, West DB, et al. Immunocytochemical detection of insulin in rat hypothalamusand its possible uptake from cerebrospinal fluid. Endocrinology, 1983, 113(5): 1818-1825.
[8]
van Houten M, Posner BI, Kopriwa BM, et al. Insulin-binding sites in the rat brain: in vivo localization to the circumventricular organs by quantitative radioautography. Endocrinology, 1979, 105(3): 666-673.
[9]
Grunblatt E, Bart J, Iuhos DI, et al. Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction. J Mol Psychiatry, 2015, 3(1): 6-15.
[10]
刘丽媛,张誉洋,王海昌.晚期糖基化终末产物的血管损伤效应及机制.中华老年心脑血管病杂志, 2015, 6(17): 660-662.
[11]
周艳平,戴甲培.轴突和树突病变与糖尿病脑病病理机制的关系研究.武汉:华中科技大学, 2012: 1-84.
[12]
Cui Y, Jiao Y, Chen YC, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes, 2014,63(2): 749-760.
[13]
刘代洪,段姗姗,张久权,等. 2型糖尿病伴轻度认知功能障碍患者脑静息态功能MRI研究.磁共振成像, 2015, 6(3): 161-167.
[14]
Musen G, Jacobson AM, Bolo NR, et al. Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes, 2012,61(9): 2375-2379.
[15]
Chen YC, Jiao Y, Cui Y, et al. Aberrant brain functional connectivity related to insulin resistance in type 2 diabetes: a resting-state fMRI study. Diabetes Care, 2014, 37(6): 1689-1696.
[16]
Xia W, Wang S, Spaeth AM, et al. Insulin resistance-associated interhemispheric functional connectivity alterations in T2DM: a resting-state fMRI study. Biomed Res Int, 2015, 2015: 1-9.
[17]
Cui Y, Jiao Y, Chen HJ, et al. Aberrant functional connectivity of default-mode network in type 2 diabetes patients. Eur Radiol, 2015,25(11): 3238-3246.
[18]
Chen Y, Liu Z, Zhang J, et al. Selectively Disrupted Functional Connectivity Networks in Type 2 Diabetes Mellitus. Front Aging Neurosci, 2015, 11(7): 233.
[19]
Zhang H, Hao Y, Manor B, et al. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes. Diabetes, 2015, 64(3): 1025-1034.
[20]
Greicius MD, Supekar K, Menon V, et al. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex, 2009, 19(1): 72-78.
[21]
van den Heuvel MP, Mandl RC, Kahn RS, et al. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp, 2009, 30(10):3127-3141.
[22]
Reijmer YD, Brundel M, de Bresser J, et al. Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes: a diffusion tensor imaging study. Diabetes Care, 2013, 36(1): 137-144.
[23]
Reijmer YD, Leemans A, Brundel M, et al. Disruption of the cerebral white matter network is related to slowing of information processing speed in patients with type 2 diabetes. Diabetes, 2013, 62(6):2112-2115.
[24]
Yau PL, Hempel R, Tirsi A, et al. Cerebral white matter and retinal arterial health in hypertension and type 2 diabetes mellitus. Int J Hypertens, 2013: 329602.
[25]
Zhang J, Wang Y, Wang J, et al. White matter integrity disruptions associated with cognitive impairments in type 2 diabetic patients. Diabetes, 2014, 63(11): 3596-3605.
[26]
Zhang JH, Xu HZ, Shen QF, et al. Nε-(carboxymethyl)-lysine, white matter, and cognitive function in diabetes patients. Can J Neurol Sci, 2016, 4: 1-5.
[27]
Hajek T, Calkin C, Blagdon R, et al. Type 2 diabetes mellitus: a potentially modifiable risk factor for neurochemical brain changes in bipolar disorders. Biol Psychiatry.2015, 77(3): 295-303.
[28]
Hajek T, Bauer M, Pfennig A, et al. Large positive effect of lithium on prefrontal cortex N-acetylaspartate in patients with bipolar disorder: 2-centre study. J Psychiatry Neurosci, 2012, 37(3): 185-192.
[29]
Sinha S, Ekka M, Sharma U, et al. Assessment of changes in brain metabolites in Indian patients with type-2 diabetes mellitus using proton magnetic resonance spectroscopy. BMC Res Notes, 2014, 7(1): 41.
[30]
Ge X, Xu XY, Feng CH, et al. Relationships among serum C-reactive protein, receptor for advanced glycation products, metabolic dysfunction, and cognitive impairments. BMC Neurol, 2013, 13(1): 110.
[31]
Emmanuel Y, Cochlin LE, Tyler DJ, et al. Human hippocampal energy metabolism is impaired during cognitive activity in a lipid infusion model of insulin resistance. Brain Behav, 2013, 3(2): 134-144.

PREV Functional magnetic resonance imaging explore the cerebral function and structure changes of the depression first-degree relatives
NEXT The advanced imaging of IDH-1 mutation in gliomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn