Share:
Share this content in WeChat
X
Review
Applications of blood oxygen level dependent-functional magnetic resonance imaging in patients with moyamoya disease
WANG Yi-tuo  LI Gong-jie  YANG Zheng 

DOI:10.12015/issn.1674-8034.2016.10.013.


[Abstract] The cerebral hypoperfusion level may vary with the stages of moyamoya disease (MMD). A reasonable therapeutic strategy should be developed according to the perfusion status of each patient. CT perfusion imaging and MR perfusion imaging are commonly used to assess perfusion status in patients with MMD. Unfortunately, the risk of anaphylaxis to contrast media will increase as well. In recent years, the blood oxygenation level-dependent functional MR imaging (BOLD-fMRI) has been increasingly used to evaluate perfusion status and neuronal plasticity in a non-invasive way. Here, we review the progress of BOLD-fMRI in terms of cerebrovascular reactivity (CVR) and non-invasive assessment of the delayed blood flow information and neuronal plasticity in patients with MMD in order to provide a new perspective on the time of operation and prognosis assessment.
[Keywords] Moyamoya disease;Blood oxygenation level-dependent;Magnetic resonance imaging, functional;Cerebrovascular reactivity

WANG Yi-tuo Cognitive and Mental Health Research Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China

LI Gong-jie Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China

YANG Zheng* Cognitive and Mental Health Research Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China

*Correspondence to: Yang Z, E-mail: yangz236@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of Youth Project Beijing Municipal Natural Science Foundation No. 7144231 Capital Characteristic Clinic Project No. Z141107002514171
Received  2016-08-02
Accepted  2016-09-23
DOI: 10.12015/issn.1674-8034.2016.10.013
DOI:10.12015/issn.1674-8034.2016.10.013.

[1]
咸鹏,段炼.我国对烟雾病治疗的30年进展.中国脑血管病杂志, 2012, 9(2): 96-98.
[2]
乔鹏岗,韩聪,左智炜,等.成人烟雾病患者不同分期脑内缺血性病变MRI特点.磁共振成像, 2015, 6(12): 893-897.
[3]
Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med, 2009, 360(12): 1226-1237.
[4]
Mikulis DJ, Krolczyk G, Desal H, et al. Preoperative and postoperative mapping of cerebrovascular reactivity in moyamoya disease by using blood oxygen level-dependent magnetic resonance imaging. J Neurosurg, 2005, 103(2): 347-355.
[5]
Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990, 87(24): 9868-9872.
[6]
Kohno K, Oka Y, Kohno S, et al. Cerebral blood flow measurement as an indicator for an indirect revascularization procedure for adult patients with moyamoya disease. Neurosurgery, 1998, 42(4): 752-757.
[7]
朱慧敏,周志明,徐格林,等.脑血管反应性的检测方法.中国卒中杂志, 2009, 4(12): 1001-1007.
[8]
何锦,张东,赵元立,等.烟雾病血管的病理研究.中国卒中杂志, 2009, 4(11): 929-932.
[9]
Takagi Y, Kikuta K, Nozaki K, et al. Histological features of middle cerebral arteries from patients treated for Moyamoya disease. Neurol Med Chir (Tokyo), 2007, 47(1): 1-4.
[10]
Mandell DM, Han JS, poublanc J, et al. Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke, 2008, 39(7): 2021-2028.
[11]
Heyn C, Poublanc J, Crawley A, et al. Quantification of cerebrovascular reactivity by blood oxygen level-dependent MR imaging and correlation with conventional angiography in patients with Moyamoya disease. AJNR Am J Neuroradiol, 2010, 31(5): 862-867.
[12]
Han JS, Abou-Hamden A, Mandell DM, et al. Impact of extracranial-intracranial bypass on cerebrovascular reactivity and clinical outcome in patients with symptomatic moyamoya vasculopathy. Stroke, 2011,42(11): 3047-3054.
[13]
Han JS, Mikulis DJ, Mardimae A, et al. Measurement of cerebrovascular reactivity in pediatric patients with cerebral vasculopathy using blood oxygen level-dependent MRI. Stroke, 2011, 42(5): 1261-1269.
[14]
Thomas B, Logan W, Donner EJ, et al. Assessment of cerebrovascular reactivity using real-time BOLD fMRI in children with moyamoya disease: a pilot study. Childs Nerv Syst, 2013, 29(3): 457-463.
[15]
Prisman E, Slessarev M, Han J, et al. Comparison of the effects of independently-controlled end-tidal PCO(2) and PO(2) on blood oxygen level-dependent (BOLD) MRI. J Magn Reson Imaging, 2008, 27(1): 185-191.
[16]
Bokkers RP, van Osch MJ, Klijn CJ, et al. Cerebrovascular reactivity within perfusion territories in patients with an internal carotid artery occlusion. J Neurol Neurosurg Psychiatry, 2011, 82(9): 1011-1016.
[17]
Chang TY, Liu HL, Lee TH, et al. Change in cerebral perfusion after carotid angioplasty with stenting is related to cerebral vasoreactivity: a study using dynamic susceptibility-weighted contrast-enhanced MR imaging and functional MR imaging with a breath-holding paradigm. AJNR Am J Neuroradiol, 2009, 30(7): 1330-1336.
[18]
Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain, 2001, 124(Pt 3): 457-467.
[19]
Suzuki J, Takaku A. Cerebrovascular "moyamoya" disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol, 1969,20(3): 288-299.
[20]
Miyamoto S, Yoshimoto T, Hashimoto N, et al. Effects of extracranial-intracranial bypass for patients with hemorrhagic moyamoya disease: results of the Japan Adult Moyamoya Trial. Stroke, 2014, 45(5): 1415-1421.
[21]
Kraemer M, Heienbrok W, Berlit P. Moyamoya disease in Europeans. Stroke, 2008, 39(12): 3193-3200.
[22]
Hallemeier CL, Rich KM, Grubb RL, et al. Clinical features and outcome in North American adults with moyamoya phenomenon. Stroke, 2006, 37(6): 1490-1496.
[23]
Fujimoto S, Toyoda K, Inoue T, et al. Changes in superficial temporal artery blood flow and cerebral hemodynamics after extracranial-intracranial bypass surgery in moyamoya disease and atherothrombotic carotid occlusion. J Neurol Sci, 2013, 325(1-2): 10-14.
[24]
Kronenburg A, Braun KP, van der Zwan A, et al. Recent advances in moyamoya disease: pathophysiology and treatment. Curr Neurol Neurosci Rep, 2014, 14(1): 423.
[25]
Moser DJ, Robinson RG, Hynes SM, et al. Neuropsychological performance is associated with vascular function in patients with atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol, 2007, 27(1): 141-146.
[26]
Balucani C, Viticchi G, Falsetti L, et al. Cerebral hemodynamics and cognitive performance in bilateral asymptomatic carotid stenosis. Neurology, 2012, 79(17): 1788-1795.
[27]
Fierstra J, Maclean DB, Fisher JA, et al. Surgical revascularization reverses cerebral cortical thinning in patients with severe cerebrovascular steno-occlusive disease. Stroke, 2011, 42(6): 1631-1637.
[28]
Ma Y, Li M, Jiao LQ, et al. Contralateral cerebral hemodynamic changes after unilateral direct revascularization in patients with moyamoya disease. Neurosurg Rev, 2011, 34(3): 347-353.
[29]
Mandell DM, Han JS, Poublanc J, et al. Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. AJNR Am J Neuroradiol, 2011, 32(4): 721-727.
[30]
Horn A, Ostwald D, Reisert M, et al. The structural-functional connectome and the default mode network of the human brain. Neuroimage, 2014, 102(Pt 1): 142-151.
[31]
Lei Y, Li Y, Ni W, et al. Spontaneous brain activity in adult patients with moyamoya disease: a resting-state fMRI study. Brain Res, 2014,1546(11): 27-33.
[32]
Lei Y, Su J, Jiang H, et al. Aberrant regional homogeneity of resting-state executive control, default mode, and salience networks in adult patients with moyamoya disease. Brain Imaging Behav, DOI: 2016, DOI: 10.1007/s11682-016-9518-5.
[33]
Liu Y, D'Arceuil H, He J, et al. MRI of spontaneous fluctuations after acute cerebral ischemia in nonhuman primates. J Magn Reson Imaging, 2007, 26(4): 1112-1116.
[34]
Chang C, Thomason ME, Glover GH. Mapping and correction of vascular hemodynamic latency in the BOLD signal. Neuroimage, 2008, 43(1): 90-102.
[35]
王一托,韩聪,左智炜,等.磁共振灌注成像定量评估儿童烟雾病血管重建术后血流动力学变化.磁共振成像, 2015, 6(12): 898-903.
[36]
Calamante F, Christensen S, Desmond PM, et al. The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke, 2010, 41(6): 1169-1174.
[37]
Lansberg MG, Straka M, Kemp S, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol, 2012, 11(10): 860-867.
[38]
Lv Y, Margulies DS, Cameron CR, et al. Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging. Ann Neurol, 2013, 73(1): 136-140.
[39]
Christen T, Jahanian H, Ni WW, et al. Noncontrast mapping of arterial delay and functional connectivity using resting-state functional MRI: a study in Moyamoya patients. J Magn Reson Imaging, 2015, 41(2):424-430.
[40]
Bergfeldt U, Jonsson T, Bergfeldt L, et al. Cortical activation changes and improved motor function in stroke patients after focal spasticity therapy--an interventional study applying repeated fMRI. BMC Neurol, 2015, 15(1): 52.
[41]
Promjunyakul NO, Schmit BD, Schindler-Ivens S. Changes in hemodynamic responses in chronic stroke survivors do not affect fMRI signal detection in a block experimental design. Magn Reson Imaging, 2013, 31(7): 1119-1128.
[42]
Kim SG, Ogawa S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab, 2012, 32(7): 1188-1206.
[43]
Calabrò RS, Bramanti P, Baglieri A, et al. Functional cortical and cerebellar reorganization in a case of moyamoya disease. Innov Clin Neurosci, 2015, 12(1-2): 24-28.

PREV The research of influence between different incoherent sampling patterns and point spread functions in MRI
NEXT Research progress of magnetic resonance imaging in major depressive disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn