Share:
Share this content in WeChat
X
Highlights
The 2016 World Health Organization classification of tumors of the central nervous system: A summary
WANG Kai  ZHANG Shu  SHI Lu  WANG Xin  AI Lin  DAI Jian-ping 

DOI:10.12015/issn.1674-8034.2016.12.001.


[Abstract] The 2016 World Health Organization classification of tumors of the central nervous system is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumor with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor/hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
[Keywords] Central nervous system neoplasms;Classification;Magnetic resonance imaging

WANG Kai Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

ZHANG Shu Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

SHI Lu Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

WANG Xin Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

AI Lin Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

DAI Jian-ping* Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China

*Correspondence to: Dai JP, E-mail: daijianping_2008@126.com

Conflicts of interest   None.

Received  2016-06-16
Accepted  2016-11-06
DOI: 10.12015/issn.1674-8034.2016.12.001
DOI:10.12015/issn.1674-8034.2016.12.001.

[1]
Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 2007, 114(2): 97-109.
[2]
Louis DN. The next step in brain tumor classification: "Let us now praise famous men"... or molecules?. Acta Neuropathol, 2012, 124(6): 761-762.
[3]
Louis DN, Perry A, Burger P, et al. International society of neuropathology-haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol, 2014, 24(5): 429-435.
[4]
Giannini C, Scheithauer BW, Weaver AL, et al. Oligodendrogliomas: reproducibility and prognostic value of histologic diagnosis and grading. J Neuropathol Exp Neurol, 2001, 60(3): 248-262.
[5]
van den Bent MJ. Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician's perspective. Acta Neuropathol, 2010, 120(3): 297-304.
[6]
Network CGA, Brat DJ, Verhaak RG, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med, 2015, 372(26): 2481-2498.
[7]
Sahm F, Reuss D, Koelsche C, et al. Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol, 2014, 128(4): 551-559.
[8]
Wiestler B, Capper D, Sill M, et al. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol, 2014, 128(4): 561-571.
[9]
Huse JT, Diamond EL, Wang L, et al. Mixed glioma with molecular features of composite oligodendroglioma and astrocytoma: a true "oligoastrocytoma"?. Acta Neuropathol, 2015, 129(1): 151-153.
[10]
Wilcox P, Li CC, Lee M, et al. Oligoastrocytomas: throwing the baby out with the bathwater? Acta Neuropathol, 2015, 129(1): 147-149.
[11]
Ellison DW, Dalton J, Kocak M, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol, 2011, 121(3): 381-396.
[12]
Reuss DE, Sahm F, Schrimpf D, et al. ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an "integrated" diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol, 2015, 129(1): 133-146.
[13]
Reuss DE, Kratz A, Sahm F, et al. Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol, 2015, 130(3): 407-417.
[14]
Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol, 2005, 64(6): 479-489.
[15]
Olar A, Wani KM, Alfaro-Munoz KD, et al. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol, 2015, 129(4): 585-596.
[16]
Reuss DE, Mamatjan Y, Schrimpf D, et al. IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol, 2015, 129(6): 867-873.
[17]
Killela PJ, Pirozzi CJ, Healy P, et al. Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget, 2014, 5(6): 1515-1525.
[18]
Broniscer A, Chamdine O, Hwang S, et al. Gliomatosis cerebri in children shares molecular characteristics with other pediatric gliomas. Acta Neuropathol, 2016, 131(2): 299-307.
[19]
Herrlinger U, Jones DT, Glas M, et al. Gliomatosis cerebri: no evidence for a separate brain tumor entity. Acta Neuropathol, 2016, 131(2): 309-319.
[20]
Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res, 2013, 19(4): 764-772.
[21]
Chen L, Voronovich Z, Clark K, et al. Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. Neuro Oncol, 2014, 16(11): 1478-1483.
[22]
Broniscer A, Tatevossian RG, Sabin ND, et al. Clinical, radiological, histological and molecular characteristics of paediatric epithelioid glioblastoma. Neuropathol Appl Neurobiol, 2014, 40(3): 327-336.
[23]
Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, et al. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol, 2013, 37(5): 685-698.
[24]
Kleinschmidt-DeMasters BK, Aisner DL, and Foreman NK. BRAF VE1 immunoreactivity patterns in epithelioid glioblastomas positive for BRAF V600E mutation. Am J Surg Pathol, 2015, 39(4): 528-540.
[25]
Kleinschmidt-DeMasters BK, Alassiri AH, Birks DK, et al. Epithelioid versus rhabdoid glioblastomas are distinguished by monosomy 22 and immunohistochemical expression of INI-1 but not claudin 6. Am J Surg Pathol, 2010, 34(3): 341-354.
[26]
Alexandrescu S, Korshunov A, Lai SH, et al. Epithelioid Glioblastomas and Anaplastic Epithelioid Pleomorphic Xanthoastrocytomas-Same Entity or First Cousins?. Brain Pathol, 2016, 26(2): 215-223.
[27]
Perry A, Miller CR, Gujrati M, et al. Malignant gliomas with primitive neuroectodermal tumor-like components: a clinicopathologic and genetic study of 53 cases. Brain Pathol, 2009, 19(1): 81-90.
[28]
Joseph NM, Phillips J, Dahiya S, et al. Diagnostic implications of IDH1-R132H and OLIG2 expression patterns in rare and challenging glioblastoma variants. Mod Pathol, 2013, 26(3): 315-326.
[29]
Korshunov A, Ryzhova M, Hovestadt V, et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol, 2015, 129(5): 669-678.
[30]
Ramkissoon LA, Horowitz PM, Craig JM, et al. Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci U S A, 2013, 110(20): 8188-8193.
[31]
Zhang J, Wu G, Miller CP, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet, 2013, 45(6): 602-612.
[32]
Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol, 2012, 124(3): 439-447.
[33]
Wu G, Broniscer A, McEachron TA, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet, 2012, 44(3): 251-253.
[34]
Ida CM, Rodriguez FJ, Burger PC, et al. Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol, 2015, 25(5): 575-586.
[35]
Ellison DW, Kocak M, Figarella-Branger D, et al. Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed, 2011, 10: 7.
[36]
Parker M, Mohankumar KM, Punchihewa C, et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature, 2014, 506(7489): 451-455.
[37]
Pietsch T, Wohlers I, Goschzik T, et al. Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-kappaB signaling pathway. Acta Neuropathol, 2014, 127(4): 609-611.
[38]
Rodriguez FJ, Perry A, Rosenblum MK, et al. Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity. Acta Neuropathol, 2012, 124(5): 627-641.
[39]
Rodriguez FJ, Schniederjan MJ, Nicolaides T, et al. High rate of concurrent BRAF-KIAA1549 gene fusion and 1p deletion in disseminated oligodendroglioma-like leptomeningeal neoplasms (DOLN). Acta Neuropathol, 2015, 129(4): 609-610.
[40]
Huse JT, Edgar M, Halliday J, et al. Multinodular and vacuolating neuronal tumors of the cerebrum: 10 cases of a distinctive seizure-associated lesion. Brain Pathol, 2013, 23(5): 515-524.
[41]
Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol, 2012, 123(4): 465-472.
[42]
Biegel JA. Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg Focus, 2006, 20(1): 11.
[43]
Hasselblatt M, Gesk S, Oyen F, et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am J Surg Pathol, 2011, 35(6): 933-935.
[44]
Judkins AR. Immunohistochemistry of INI1 expression: a new tool for old challenges in CNS and soft tissue pathology. Adv Anat Pathol, 2007, 14(5): 335-339.
[45]
Woehrer A, Slavc I, Waldhoer T, et al. Incidence of atypical teratoid/rhabdoid tumors in children: a population-based study by the Austrian Brain Tumor Registry, 1996-2006. Cancer, 2010, 116(24): 5725-5732.
[46]
Perry A, Stafford SL, Scheithauer BW, et al. Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol, 1997, 21(12): 1455-1465.
[47]
Schweizer L, Koelsche C, Sahm F, et al. Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol, 2013, 125(5): 651-658.
[48]
韩引萍,张玉婷,刘建莉,等.颅内血管周细胞瘤与孤立性纤维瘤的影像与病理对照.磁共振成像, 2015, 6(12): 917-921.
[49]
杨淑辉,杨家斐,邢新博,等.前颅窝脑膜孤立性纤维瘤一例.磁共振成像, 2015, 6(12): 947-949.
[50]
Chmielecki J, Crago AM, Rosenberg M, et al. Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors. Nat Genet, 2013, 45(2): 131-132.
[51]
Robinson DR, Wu YM, Kalyana-Sundaram S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet, 2013, 45(2): 180-185.
[52]
Bouvier C, Metellus P, de Paula AM, et al. Solitary fibrous tumors and hemangiopericytomas of the meninges: overlapping pathological features and common prognostic factors suggest the same spectrum of tumors. Brain Pathol, 2012, 22(4): 511-521.

PREV Progress of functional magnetic resonance imaging in chronic pain
NEXT The effect of global signal correction on the functional connectivity of resting brain networks
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn