Share:
Share this content in WeChat
X
Review
Application of multimodality fMRI in preterm brain injury
WANG Hong  XU Jian-ming 

DOI:10.12015/issn.1674-8034.2016.12.012.


[Abstract] With the rapid development of NICU, the survival rate of premature and very low birth weight infants has increased significantly. However, these preterm survivors are at risk of neurodevelopmental impairments such as cognitive and behavioral abnormalities, poor attention and social skills, learning disorder, even cerebral palsy (CP). Due to advances in functional magnetic resonance imaging (e.g. DWI, DTI, DKI, MRS, SWI, ASL) in recent years, it is feasible to investigate preterm brain injury through observation of brain microstructure, metabolism and hemodynamic. So we review the application and progress of multimodality fMRI in preterm brain injury.
[Keywords] Premature infants;Brain injury;Diffusion weighted imaging;Diffusion tensor imaging;Diffusion kurtosis imaging;Magnetic resonance spectroscopy;Susceptibility weighted imaging;Arterial spin labeling;Magnetic resonance imaging

WANG Hong Department of Radiology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou 215002, China

XU Jian-ming* Department of Radiology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou 215002, China

*Correspondence to: Xu JM, E-mail: jmxu86@163.com

Conflicts of interest   None.

Received  2016-06-29
Accepted  2016-09-08
DOI: 10.12015/issn.1674-8034.2016.12.012
DOI:10.12015/issn.1674-8034.2016.12.012.

[1]
Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet, 2008, 371(9608): 261-269.
[2]
Pandit AS, Ball G, Edwards AD, et al. Diffusion magnetic resonance imaging in preterm brain injury. Neuroradiology, 2013, 55(suppl 2): 65-95.
[3]
Johnson S, Fawke J, Hennessy E, et al. Neurodevelopmental disability through 11 years of age in children born before 26 weeks of gestation. Pediatrics, 2009, 124(2):e249-e257.
[4]
Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med, 2008, 359(3): 262-273.
[5]
Phillips JP, Montague EQ, Aragon M, et al. Prematurity affects cortical maturation in early childhood. Pediatr Neurol, 2011, 45(4): 213-219.
[6]
Back SA, Rosenberg, PA. Pathophysiology of glia in perinatal white matter injury. Glia, 2014, 62(11): 1790-1815.
[7]
Duerden EG, Taylor MJ, Miller SP. Brain development in infants born preterm: looking beyond injury. Semin Pediatr Neurol, 2013, 20(2): 65-74.
[8]
Wong CH, Crack PJ. Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med chem, 2008, 15(1):1-14.
[9]
Salmaso N, Jablonska B, Scafidi J, et al. Neurobiology of premature brain injury. Nat Neurosci, 2014, 17(3): 341-346.
[10]
Back SA. Cerebral white and gray matter injury in newborns_ new insights into pathophysiology and management. Clin Perinatol, 2014, 41(1): 1-24.
[11]
Ray SK. Currently evaluated calpain and caspase inhibitors for neuroprotection in experimental brain ischemia. Curr Med Chem, 2006, 13(28): 3425-3440.
[12]
Chao CP, Zaleski CG, Patton AC. Neonatal hypoxic-ischemic encephalopathy: multimodality imaging findings. Radiographics, 2006, 26 (Suppl 1):S159-S172.
[13]
Hunt RW, Evans N, Rieger I, et al. Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants. J Pediatr, 2004, 145(5): 588-592.
[14]
Kluckow M, Evans N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed, 2000, 82(3): 188-194.
[15]
Brew N, Walker D, Wong FY. Cerebral vascular regulation and brain injury in preterm infants. Am J Physiol Regul Integr Comp Physiol, 2014, 306(11): 773-786.
[16]
Kissack CM, Garr R, Wardle SP, et al. Postnatal changes in cerebral oxygen extraction in the preterm infant are associated with intraventricular hemorrhage and hemorrhagic parenchymal infarction but not periventricular leukomalacia. Pediatr Res, 2004, 56(1): 111-116.
[17]
O' Leary H, Gregas MC, Limperopoulos C, et al. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics, 2009, 124(1): 302-309.
[18]
Tsuji M, Saul JP, du Plessis A, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics, 2000, 106(4): 625-632.
[19]
Riddle A, Luo NL, Manese M, et al. Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J Neurosci, 2006, 26 (11): 3045-3055.
[20]
Alderliesten T, de Vries LS, Benders MJ, et al. MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and 1H MR spectroscopy. Radiology, 2011, 261(1): 235-242.
[21]
汤易,刘影.早产儿、足月儿缺血缺氧性脑损伤的MRI表现.磁共振成像, 2013, 4(3): 185-191.
[22]
Soul JS, Hammer PE, Tsuji M, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res, 2007, 61(4): 467-473.
[23]
Mukherjee P, Miller JH, Shimony JS, et al. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol, 2002, 23(9): 1445-1456.
[24]
Oksuzler YF, Cakmakci H, Kurul S, et al. Diagnostic value of diffusion-weighted magnetic resonance imaging in pediatric cerebral diseases. Pediatr Neurol, 2005, 32(5):325-333.
[25]
Hart AR, Whitby EH, Clark SJ, et al. Diffusion-weighted imaging of cerebral white matter and the cerebellum following preterm birth. Dev Med Child Neurol, 2010, 52(7): 652-659.
[26]
Cowan FM, Pennock JM, Hanrahan JD, et al. Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging. Neuropediatrics, 1994, 25(4): 172-175.
[27]
Hart AR, Whitby EH, Clark SJ, et al. Diffusion-weighted imaging of cerebral white matter and the cerebellum following preterm birth. Dev Med Child Neurol, 2010, 52(7): 652-659.
[28]
Winter JD, Lee DS, Hung RM, et al. Apparent diffusion coefficient pseudonormalization time in neonatal hypoxic-ischemic encephalopathy. Pediatr Neurol, 2007, 37(4): 255-262.
[29]
Rutherford M, Biarge MM, Allsop J, et al. MRI of perinatal brain injury. Pediatr Radiol, 2010, 40(6): 819-833.
[30]
Alderliesten T, deVries LS, Benders MJ, et al. MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and 1H MR spectroscopy. Radiology, 2011, 261(1): 235-242.
[31]
Provenzale JM, Liang L, DeLong D, et al. Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. AJR Am J Roentgenol, 2007, 189(2): 476-486.
[32]
刘岭岭,孛茹婷,杨文君,等.磁共振弥散张量成像技术在新生儿脑白质发育中的研究.磁共振成像, 2015, 6(4): 253-257.
[33]
Wimberger DM, Roberts TP, Barkovich AJ, et al. Identification of "premyelination" by diffusion-weighted MRI. J Comput Assist Tomogr, 1995, 19(1): 28-33.
[34]
Ancora G, Testa C, Grand S, et al. Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxic-ischemic encephalopathy treated by brain cooling. Neuroradiology, 2013, 55(8): 1017-1025.
[35]
Ward P, Counsell S, Allsop J, et al. Reduced fractional anisotropy on diffusion tensor magnetic resonance imaging after hypoxic-ischemic encephalopathy. Pediatrics, 2006, 117(4): 619-630.
[36]
高洁,张育苗,孙亲利,等.基于纤维束空间统计分析法研究早产及足月新生儿局灶性脑白质损伤的扩散张量成像特点.磁共振成像, 2014, 5(1): 24-29.
[37]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6): 1432-1440.
[38]
曾丁巳,肖新兰.扩散峰度成像(DKI)在中枢神经系统的应用.临床放射学杂志, 2011, 30(9): 1400-1402.
[39]
Paydar A, Fieremans E, Nwankwo JI, et al. Diffusional kurtosis imaging of the developing brain. AJNR Am J Neuroradiol, 2014, 35(4): 808-814.
[40]
Cheong JL, Cady EB, Penrice J, et al. Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. AJNR Am J Neuroradiol, 2006, 27(7): 1546-1554.
[41]
Roelants-van Rijn AM, van der Grond J, de Vries LS, et al. Value of 1H-MRS using different echo times in neonates with cerebral hypoxia-ischemia. Pediatr Res, 2001, 49(3): 356-362.
[42]
Gano D, Chau V, Poskitt KJ, et al. Evolution of pattern of injury and quantitative MRI on days 1 and 3 in term newborns with hypoxic-ischemic encephalopathy. Pediatr Res, 2013, 74(1): 82-87.
[43]
Thayyil S, Chandrasekaran M, Taylor A, et al. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics, 2010, 125(2): 382-395.
[44]
Hüppi PS, Amato M. Advanced magnetic resonance imaging techniques in perinatal brain injury. Biol Neonate, 2001, 80(1): 7-14.
[45]
Ramenghi LA, Fumagalli M, Righini A, et al. Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctuate white matter lesions. Neuroradiology, 2007, 49(2): 161-167.
[46]
Niwa T, de Vries LS, Benders MJ, et al. Punctate white matter lesions in infants: new insights using susceptibility-weighted Imaging. Neuroradiology, 2011, 53(9): 669-679.
[47]
Miranda MJ, Olofsson K, Sidaros K. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling. Pediatr Res, 2006, 60(3): 359-363.
[48]
Liu AA, Voss HU, Dyke JP, et al. Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology, 2011, 77(16): 1518-1523.
[49]
Wolf RL, Alsop DC, McGarvey ML, et al. Susceptibility contrast and arterial spin labeled perfusion MRI in cerebrovascular disease. J Neuroimaging, 2003, 13(1): 17-27.
[50]
Wang J, Licht DJ, Jahng GH, et al. Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging, 2003, 18(4): 404-413.
[51]
Miranda MJ, Olofsson K, Sidaros K. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling. Pediatr Res, 2006, 60(3): 359-363.
[52]
Ye FQ, Frank JA, Weinberger DR, et al. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med, 2000, 44(1): 92-100.
[53]
Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med, 1995, 34 (3): 293-301.
[54]
Mildner T, Trampel R, Möller HE, et al. Functional perfusion imaging using continuous arterial spin labeling with separate labeling and imaging coils at 3 T. Magn Reson Med, 2003, 49(5): 791-795.
[55]
Ye FQ, Mattay VS, Jezzard P, et al. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med, 1997, 37(2): 226-235.

PREV MR study on neuromyelitis optica and multiple sclerosis: A review on different MRI technique
NEXT Whole-body diffusion-weighted MRI on 3.0 Tesla system: technical feasibility and diagnostic value
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn