Share:
Share this content in WeChat
X
Editorial
The principle and prospect of intravoxel incoherent motion imaging
GU Li-ping  HE Guang-jun  MA Jun 

DOI:10.12015/issn.1674-8034.2017.04.001.


[Abstract] The concept of intravoxel incoherent motion (IVIM) imaging has demonstrated that the diffusion-weighted signal can be influenced not only by molecular diffusion but also by microcirculation. It allows a more comprehensive analysis of datas of diffusion-weighted imaging (DWI). In recent years, IVIM has been used in clinical research. It will play an important role in the diagnosis of diseases in various organs and systems.
[Keywords] Intravoxel incoherent motion imaging;Diffusion-weighted imaging;Magnetic resonance imaging

GU Li-ping Publishing House of Chinese Journal of Magnetic Resonance Imaging, Beijing 100190, China

HE Guang-jun* Publishing House of Chinese Journal of Magnetic Resonance Imaging, Beijing 100190, China

MA Jun* Department of Radiology, Beijing Tiantan Hospital of Capital Medicial University, Beijing 100050, China

*Correspondence to: He GJ, E-mail: guangjunhe@126.com; Ma J, E-mail: dr_ma@sina.com

Conflicts of interest   None.

Received  2017-03-31
Accepted  2017-04-09
DOI: 10.12015/issn.1674-8034.2017.04.001
DOI:10.12015/issn.1674-8034.2017.04.001.

[1]
Le BD. Intravoxel incoherent motion imaging using steady-state free precession. Magnet Reson Med, 1988, 7(3): 346-351.
[2]
Le BD. Magnetic resonance imaging of perfusion. Magnet Reson Med, 1990, 14 (2): 283-292.
[3]
Karger J, Pfeifer H, Heink W. Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson, 1988, 12: 1-89.
[4]
Li JR, Hang TN, Dang VN, et al. Numerical study of a macroscopic finite pulse model of the diffusion MRI signal. Magnet Reson Med, 2014, 248: 54.
[5]
Iima M, Le BD. Clinical intravoxel incoherent motion and diffusion MR imaging: Past, present, and future. Radiology, 2016, 278(1): 13-32.
[6]
Federau C, O'Brien K, Meuli R, et al. Measuring brain perfusion with intravoxel incoherent motion (IVIM): Initial clinical experience. Magnet Reson Med, 2014, 39(3): 624-632.
[7]
Powers TA, Lorenz CH, Holburn GE, et al. Renal artery stenosis: in vivo perfusion MR imaging. Radiology, 1991, 178 (2): 543-548.
[8]
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology, 2008, 249 (3): 891-899.
[9]
Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology, 1999, 210(3): 617-623.
[10]
Lee Y, Lee SS, Kim N, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology, 2015, 274(2): 405-415.
[11]
Gurney-Champion OJ, Froeling M, Klaassen R, et al. Minimizing the acquisition time for intravoxel incoherent motion magnetic resonance imaging acquisitions in the liver and pancreas. Invest Radiol, 2016, 51(4): 211-220.
[12]
Moore RJ, Strachan BK, Tyler DJ, et al. In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI. Placenta, 2000, 21(7): 726-732.

PREV An update of functional neuroimaging of REM sleep behavior disorder in Parkinson,s disease
NEXT Application of artery spin labeling and intravoxel incoherent motion MR study in the grading of gliomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn