Share:
Share this content in WeChat
X
[Chinese] [PDF] 1639 635
Editorial
The principle and prospect of intravoxel incoherent motion imaging
GU Li-ping  HE Guang-jun  MA Jun 

DOI:10.12015/issn.1674-8034.2017.04.001.


[Abstract] The concept of intravoxel incoherent motion (IVIM) imaging has demonstrated that the diffusion-weighted signal can be influenced not only by molecular diffusion but also by microcirculation. It allows a more comprehensive analysis of datas of diffusion-weighted imaging (DWI). In recent years, IVIM has been used in clinical research. It will play an important role in the diagnosis of diseases in various organs and systems.
[Keywords] Intravoxel incoherent motion imaging;Diffusion-weighted imaging;Magnetic resonance imaging

GU Li-ping Publishing House of Chinese Journal of Magnetic Resonance Imaging, Beijing 100190, China

HE Guang-jun* Publishing House of Chinese Journal of Magnetic Resonance Imaging, Beijing 100190, China

MA Jun* Department of Radiology, Beijing Tiantan Hospital of Capital Medicial University, Beijing 100050, China

*Correspondence to: He GJ, E-mail: guangjunhe@126.com; Ma J, E-mail: dr_ma@sina.com

Conflicts of interest   None.

Received  2017-03-31
Accepted  2017-04-09
DOI: 10.12015/issn.1674-8034.2017.04.001
DOI:10.12015/issn.1674-8034.2017.04.001.

[1]
Le BD. Intravoxel incoherent motion imaging using steady-state free precession. Magnet Reson Med, 1988, 7(3): 346-351.
[2]
Le BD. Magnetic resonance imaging of perfusion. Magnet Reson Med, 1990, 14 (2): 283-292.
[3]
Karger J, Pfeifer H, Heink W. Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson, 1988, 12: 1-89.
[4]
Li JR, Hang TN, Dang VN, et al. Numerical study of a macroscopic finite pulse model of the diffusion MRI signal. Magnet Reson Med, 2014, 248: 54.
[5]
Iima M, Le BD. Clinical intravoxel incoherent motion and diffusion MR imaging: Past, present, and future. Radiology, 2016, 278(1): 13-32.
[6]
Federau C, O'Brien K, Meuli R, et al. Measuring brain perfusion with intravoxel incoherent motion (IVIM): Initial clinical experience. Magnet Reson Med, 2014, 39(3): 624-632.
[7]
Powers TA, Lorenz CH, Holburn GE, et al. Renal artery stenosis: in vivo perfusion MR imaging. Radiology, 1991, 178 (2): 543-548.
[8]
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology, 2008, 249 (3): 891-899.
[9]
Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology, 1999, 210(3): 617-623.
[10]
Lee Y, Lee SS, Kim N, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology, 2015, 274(2): 405-415.
[11]
Gurney-Champion OJ, Froeling M, Klaassen R, et al. Minimizing the acquisition time for intravoxel incoherent motion magnetic resonance imaging acquisitions in the liver and pancreas. Invest Radiol, 2016, 51(4): 211-220.
[12]
Moore RJ, Strachan BK, Tyler DJ, et al. In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI. Placenta, 2000, 21(7): 726-732.

PREV An update of functional neuroimaging of REM sleep behavior disorder in Parkinson<sup><sup>,</sup></sup>s disease
NEXT Application of artery spin labeling and intravoxel incoherent motion MR study in the grading of gliomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn