Share:
Share this content in WeChat
X
IVIM Papers
The technology progression of intravoxel incoherent motion on biexponential model
LUO Ma  ZHANG Wei-dong 

DOI:10.12015/issn.1674-8034.2017.04.006.


[Abstract] Intravoxel incoherent motion (IVIM) is a quantitative method that can be used to noninvasively distinguish tissue diffusivity from perfusion related-diffusion by multiple b values sampling on diffusion-weighted imaging. IVIM biexponential model has not only attracted broad attention, but also been applied in the researches of disease diagnosis and differentiation, evaluation or prediction of therapeutic effect, lesion staging or grading and combination of other imaging patterns. The current research situations and progresses on technology, such as scanning methods, the choice of b value, the repeatability and significance of parameters, and the accuracy of perfusion-related parameters, are mainly discussed in this article.
[Keywords] Intravoxel incoherent motion;Biexponential model;Magnetic resonance imaging

LUO Ma Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China

ZHANG Wei-dong* Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China

*Correspondence to: Zhang WD, E-mail: zhangwd@sysucc.org.cn

Conflicts of interest   None.

Received  2016-11-24
Accepted  2017-03-22
DOI: 10.12015/issn.1674-8034.2017.04.006
DOI:10.12015/issn.1674-8034.2017.04.006.

[1]
Le BD, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
[2]
Barbieri S, Donati OF, Froehlich JM, et al. Comparison of intravoxel incoherent motion parameters across MR imagers and field strengths: evaluation in upper abdominal organs. Radiology, 2016, 279(3): 784-794.
[3]
Orton MR, Collins DJ, Koh D, et al. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magnet Reson Med, 2014, 71(1): 411-420.
[4]
Kakite S, Dyvorne H, Besa C, et al. Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 T. Magn Reson Imaging, 2015, 41(1): 149-156.
[5]
Rosenkrantz AB, Oei M, Babb JS, et al. Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. Magn Reson Imaging, 2011, 33(1): 128-135.
[6]
Colagrande S, Mazzoni LN, Mazzoni E, et al. Effects of gadoxetic acid on quantitative diffusion-weighted imaging of the liver. Magn Reson Imaging, 2013, 38(2): 365-370.
[7]
Choi JS, Kim M, Choi J, et al. Diffusion-weighted MR imaging of liver on 3.0 Tesla system: effect of intravenous administration of gadoxetic acid disodium. Eur Radiol, 2010, 20(5): 1052-1060.
[8]
Lee Y, Lee SS, Kim N, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology, 2015, 274(2): 405-415.
[9]
Dyvorne HA, Galea N, Nevers T, et al. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters-a pilot study. Radiology, 2013, 266(3): 920-929.
[10]
Shan Y, Zeng MS, Liu K, et al. Comparison of free-breathing with navigator-triggered technique in diffusion weighted imaging for evaluation of small hepatocellular carcinoma: effect on image quality and intravoxel incoherent motion parameters. J Comput Assist Tomo, 2015, 39(5): 709-715.
[11]
Jerome NP, Orton MR, D'Arcy JA, et al. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: Effect on ADC and IVIM statistics. Magn Reson Imaging, 2014, 39(1): 235-240.
[12]
Watanabe H, Kanematsu M, Goshima S, et al. Characterizing focal hepatic lesions by free-breathing intravoxel incoherent motion MRI at 3.0 T. Acta Radiol, 2014, 55(10): 1166-1173.
[13]
Hollingsworth KG, Lomas DJ. Influence of perfusion on hepatic MR diffusion measurement. NMR in Biomedicine, 2006, 19(2): 231-235.
[14]
Kwee TC, Takahara T, Niwa T, et al. Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. Magn Reson Mater Phy, 2009, 22(5): 319-325.
[15]
Schmid-Tannwald C, Jiang Y, Dahi F, et al. Diffusion-weighted MR imaging of focal liver lesions in the left and right lobes. Acta Radiol, 2013, 20(4): 440-445.
[16]
Cohen AD, Schieke MC, Hohenwalter MD, et al. The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magnet Reson Med, 2015, 73(1): 306-311.
[17]
Gurney-Champion OJ, Froeling M, Klaassen R, et al. Minimizing the acquisition time for intravoxel incoherent motion magnetic resonance imaging acquisitions in the liver and pancreas. Invest Radiol, 2016, 51(4): 211-220.
[18]
Dyvorne H, Jajamovich G, Kakite S, et al. Intravoxel incoherent motion diffusion imaging of the liver: Optimal b-value subsampling and impact on parameter precision and reproducibility. Eur Radiol, 2014, 83(12): 2109-2113.
[19]
Ter Voert EE, Delso G, Porto M, et al. Intravoxel incoherent motion protocol evaluation and data quality in normal and malignant liver tissue and comparison to the literature. Invest Radiol, 2016, 51(2): 90-99.
[20]
Iima M, Le BD. Clinical intravoxel incoherent motion and diffusion MR imaging: Past, present, and future. Radiology, 2016, 278(1): 13-32.
[21]
Andreou A, Koh DM, Collins DJ, et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol, 2013, 23(2): 428-434.
[22]
Chandarana H, Kang SK, Wong S, et al. Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol, 2012, 47(12): 688-696.
[23]
Yoon JH, Lee JM, Yu MH, et al. Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: Comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. Magn Reson Imaging, 2014, 39(2): 276-285.
[24]
Doblas S, Wagner M, Leitao HS, et al. Determination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived measurements. Invest Radiol, 2013, 48(10): 722-728.
[25]
Dijkstra H, Baron P, Kappert P, et al. Effects of microperfusion in hepatic diffusion weighted imaging. Eur Radiol, 2012, 22(4): 891-899.
[26]
Zhang S, Jia Q, Zhang Z, et al. Intravoxel incoherent motion MRI: emerging applications for nasopharyngeal carcinoma at the primary site. Eur Radiol, 2014, 24(8): 1998-2004.
[27]
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology, 2008, 249(3): 891-899.
[28]
Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0 T MR study. Radiology, 2012, 265(1): 96-103.
[29]
Parente DB, Paiva FF, Oliveira Neto JA, et al. Intravoxel incoherent motion diffusion weighted MR imaging at 3.0 T: assessment of steatohepatitis and fibrosis compared with liver biopsy in type 2 diabetic patients. PLoS One, 2015, 10(5): e125653.
[30]
Klauss M, Lemke A, Grunberg K, et al. Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest Radiol, 2011, 46(1): 57-63.
[31]
Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology, 1999, 210(3): 617-623.
[32]
Moteki T, Horikoshi H. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. Magn Reson Imaging, 2006, 24(3): 637-645.
[33]
Lewin M, Fartoux L, Vignaud A, et al. The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: a pilot study. Eur Radiol, 2011, 21(2): 281-290.
[34]
Granata V, Fusco R, Catalano O, et al. Early assessment of colorectal cancer patients with liver metastases treated with antiangiogenic drugs: the role of intravoxel incoherent motion in diffusion-weighted imaging. PLoS One, 2015, 10(11): e142876.
[35]
Yu XP, Hou J, Li FP, et al. Intravoxel incoherent motion diffusion weighted magnetic resonance imaging for differentiation between nasopharyngeal carcinoma and lymphoma at the primary site. J Comput Assist Tomo, 2016, 40(3): 413-418.
[36]
Federau C, O'Brien K, Birbaumer A, et al. Functional mapping of the human visual cortex with intravoxel incoherent motion MRI. PLoS One, 2015, 10(2): e117706.
[37]
Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0 T MR study. Radiology, 2012, 265(1): 96-103.
[38]
Zhou N, Chu C, Dou X, et al. Early evaluation of irradiated parotid glands with intravoxel incoherent motion MR imaging: correlation with dynamic contrast-enhanced MR imaging. BMC Cancer, 2016, 16(1): 865.
[39]
Marzi S, Stefanetti L, Sperati F, et al. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors. NMR Biomed, 2016, 29(1): 6-14.
[40]
Lin Y, Li J, Zhang Z, et al. Comparison of intravoxel incoherent motion diffusion-weighted MR imaging and arterial spin labeling MR imaging in gliomas. Biomed Res Int, 2014, 2015: 1-10.
[41]
Fujima N, Yoshida D, Sakashita T, et al. Intravoxel incoherent motion diffusion-weighted imaging in head and neck squamous cell carcinoma: assessment of perfusion-related parameters compared to dynamic contrast-enhanced MRI. Magn Reson Imaging, 2014, 32(10): 1206-1213.
[42]
Federau C, O'Brien K, Meuli R, et al. Measuring brain perfusion with intravoxel incoherent motion (IVIM): Initial clinical experience. Magn Reson Imaging, 2014, 39(3): 624-632.
[43]
Wang LL, Lin J, Liu K, et al. Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging. Eur Radiol, 2014, 24(8): 1914-1922.
[44]
Patel J, Sigmund EE, Rusinek H, et al. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: Preliminary experience. Magn Reson Imaging, 2010, 31(3): 589-600.
[45]
Hectors SJ, Wagner M, Besa C, et al. Intravoxel incoherent motion diffusion-weighted imaging of hepatocellular carcinoma: Is there a correlation with flow and perfusion metrics obtained with dynamic contrast-enhanced MRI?. Magn Reson Imaging, 2016, 44(4): 856-864.

PREV Application of introvoxel incoherent motion sequence in the preoperative T-stage of tongue carcinoma
NEXT Reduced perfusion in normal appearing white matter in relapsing-remitting multiple sclerosis using 3D pseudocontinuous arterial spin labeling
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn