Share:
Share this content in WeChat
X
Review
Technical advances and clinical applications of territorial arterial spin labeling
XU Hui-min  LIU Ying  YUAN Hui-shu 

DOI:10.12015/issn.1674-8034.2017.05.012.


[Abstract] To know the exact cerebral perfusion territory supplied by individual cerebral artery is of great significance to the diagnosis and treatment of many cerebrovascular diseases. On the basis of arterial spin labeling MRI techniques, territorial arterial spin labeling (t-ASL) using different technology methods to selectively label individual cerebral artery and then to obtain the cerebral perfusion territories mapping. Besides, since t-ASL has the advantages of no contrast agents and non-ionizing radiation, it has wide application foreground. This review provides an overview of the development and different technical principles of territorial ASL techniques, and summarizes its clinical applications.
[Keywords] Territorial arterial spin labeling;Cerebral perfusion territories

XU Hui-min Department of Radiology, Peking University Third Hospital, Beijing 100191, China

LIU Ying Department of Radiology, Peking University Third Hospital, Beijing 100191, China

YUAN Hui-shu* Department of Radiology, Peking University Third Hospital, Beijing 100191, China

*Correspondence to: Yuan HS, E-mail: huishuy@sina.com

Conflicts of interest   None.

Received  2017-01-10
Accepted  2017-04-06
DOI: 10.12015/issn.1674-8034.2017.05.012
DOI:10.12015/issn.1674-8034.2017.05.012.

[1]
Henderson RD, Eliasziw M, Fox AJ, et al. Angiographically defined collateral circulation and risk of stroke in patients with severe carotid artery stenosis. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. Stroke, 2000, 31(1): 128-132.
[2]
Bendszus M, Koltzenburg M, Burger R, et al. Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet, 1999, 354(9190): 1594-1597.
[3]
Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med, 2015, 73(1): 102-116.
[4]
Hartkamp NS, Petersen ET, De Vis JB, et al. Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application. NMR Biomed, 2013, 26(8): 901-912.
[5]
罗海龙, 黄力. 动脉自旋标记的新进展及其在缺血性脑血管病的应用. 国际医学放射学杂志, 2014, 37(1): 58-62.
[6]
Detre JA, Zhang W, Roberts DA, et al. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed, 1994, 7(1-2): 75-82.
[7]
Zhang W, Silva AC, Williams DS, et al. NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins.. Magn Reson Med, 1995, 33(3): 370-376.
[8]
Davies NP, Jezzard P. Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn Reson Med, 2003, 49(6): 1133-1142.
[9]
Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med, 2005, 53(1): 15-21.
[10]
Gunther M. Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn Reson Med, 2006, 56(3): 671-675.
[11]
Kamano H, Yoshiura T, Hiwatashi A, et al. Accelerated territorial arterial spin labeling based on shared rotating control acquisition: an observer study for validation. Neuroradiology, 2012, 54(1): 65-71.
[12]
Hartkamp NS, Helle M, Chappell MA, et al. Validation of planning-free vessel-encoded pseudo-continuous arterial spin labeling MR imaging as territorial-ASL strategy by comparison to super-selective p-CASL MRI. Magn Reson Med, 2014, 71(6): 2059-2070.
[13]
Wong EC. Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med, 2007, 58(6): 1086-1091.
[14]
Wong EC, Guo J. Blind detection of vascular sources and territories using random vessel encoded arterial spin labeling. MAGMA, 2012, 25(2): 95-101.
[15]
Gevers S, Bokkers RP, Hendrikse J, et al. Robustness and reproducibility of flow territories defined by planning-free vesselencoded pseudocontinuous arterial spin-labeling. AJNR Am J Neuroradiol, 2012, 33(2): E21-25.
[16]
Helle M, Norris DG, Rufer S, et al. Superselective pseudocontinuous arterial spin labeling. Magn Reson Med, 2010, 64(3): 777-786.
[17]
Helle M, Rufer S, van Osch MJ, et al. Selective multivessel labeling approach for perfusion territory imaging in pseudo-continuous arterial spin labeling. Magn Reson Med, 2012, 68(1): 214-219.
[18]
Lindner T, Larsen N, Jansen O, et al. Accelerated visualization of selected intracranial arteries by cycled super-selective arterial spin labeling. MAGMA, 2016, 29(6): 843-852.
[19]
Hendrikse J, van der Zwan A, Ramos LM, et al. Altered flow territories after extracranial-intracranial bypass surgery. Neurosurgery, 2005, 57(3): 486-494.
[20]
Duret H. Recherches anatomiques sur la circulation de l' enchephale. Arch Physiol Norm Pathol, 1874, (6-9): 316-353.
[21]
Van der Zwan A, Hillen B, Tulleken CA, et al. Variability of the territories of the major cerebral arteries. J Neurosurg, 1992, 77(6): 927-940.
[22]
Krabbe-Hartkamp MJ, van der Grond J, de Leeuw FE, et al. Circle of Willis: morphologic variation on three-dimensional time-of-flight MR angiograms. Radiology, 1998, 207(1): 103-111.
[23]
Van Laar PJ, Hendrikse J, Golay X, et al. In vivo flow territory mapping of major brain feeding arteries. Neuroimage, 2006, 29(1): 136-144.
[24]
Cosson A, Tatu L, Vuillier F, et al. Arterial vascularization of the human thalamus: extra-parenchymal arterial groups. Surg Radiol Anat, 2003, 25(5-6): 408-415.
[25]
Hendrikse J, Petersen ET, Chng SM, et al. Distribution of cerebral blood flow in the nucleus caudatus, nucleus lentiformis, and thalamus: a study of territorial arterial spin-labeling MR imaging. Radiology, 2010, 254(3): 867-875.
[26]
Kansagra AP, Wong EC. Quantitative assessment of mixed cerebral vascular territory supply with vessel encoded arterial spin labeling MRI. Stroke, 2008, 39(11): 2980-2985.
[27]
Hartkamp NS, De Cocker LJ, Helle M, et al. In vivo visualization of the PICA perfusion territory with super-selective pseudo-continuous arterial spin labeling MRI. Neuroimage, 2013, 83: 58-65.
[28]
Rothwell PM, Eliasziw M, Gutnikov SA, et al. Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Lancet, 2004, 363(9413): 915-924.
[29]
Hartkamp NS, Hendrikse J, De Cocker LJ, et al. Misinterpretation of ischaemic infarct location in relationship to the cerebrovascular territories. J Neurol Neurosurg Psychiatry, 2016, 87(10): 1084-1090.
[30]
Hendrikse J, Petersen ET, van Laar PJ, et al. Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology, 2008, 246(2): 572-580.
[31]
Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol, 1998, 55(11): 1475-1482.
[32]
Liebeskind DS. Collateral circulation. Stroke, 2003, 34(9): 2279-2284.
[33]
Chng SM, Petersen ET, Zimine I, et al. Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke, 2008, 39(12): 3248-3254.
[34]
Jones CE, Wolf RL, Detre JA, et al. Structural MRI of carotid artery atherosclerotic lesion burden and characterization of hemispheric cerebral blood flow before and after carotid endarterectomy. NMR Biomed, 2006, 19(2): 198-208.
[35]
Van Laar PJ, Hendrikse J, Klijn CJ, et al. Symptomatic carotid artery occlusion: flow territories of major brain-feeding arteries. Radiology, 2007, 242(2): 526-534.
[36]
Van Laar PJ, van der Grond J, Bremmer JP, et al. Assessment of the contribution of the external carotid artery to brain perfusion in patients with internal carotid artery occlusion. Stroke, 2008, 39(11): 3003-3008.
[37]
Golay X, Hendrikse J, Van Der Grond J. Application of regional perfusion imaging to extra-intracranial bypass surgery and severe stenoses. J Neuroradiol, 2005, 32(5): 321-324.
[38]
Kukuk GM, Hadizadeh DR, Boström A, et al. Cerebral arteriovenous malformations at 3.0 T: intraindividual comparative study of 4D-MRA in combination with selective arterial spin labeling and digital subtraction angiography. 2010, Invest Radiol, 2010, 45(3): 126-132.
[39]
Yu SL, Wang R, Wang R, et al. Accuracy of vessel-encoded pseudocontinuous arterial spin-labeling in identification of feeding arteries in patients with intracranial arteriovenous malformations. AJNR Am J Neuroradiol, 2014, 35(1): 65-71.
[40]
Helle MJ, Norris D, Rüfer S, et al. Superselective MR-angiography based on pseudo-continuous arterial spin labeling and first applications in AVM patients. Montreal: Proceedings of the 19th Annual Meeting ISMRM, 2011: 364.
[41]
Helle M, Rufer S, van Osch MJ, et al. Superselective arterial spin labeling applied for flow territory mapping in various cerebrovascular diseases. J Magn Reson Imaging, 2013, 38(2): 496-503.
[42]
乔鹏岗, 韩聪, 左智炜, 等. 成人烟雾病患者不同分期脑内缺血性病变MRI特点. 磁共振成像, 2015, 6(12): 893-897.
[43]
Saida T, Masumoto T, Nakai Y, et al. Moyamoya disease: evaluation of postoperative revascularization using multiphase selective arterial spin labeling MRI. J Comput Assist Tomogr, 2012, 36(1): 143-149.
[44]
Helle JO, Nabavi A, Norris D, et al. Presurgical assessment of the feeding vasculature in extra-axial tumors with superselective arterial spin labeling. Montreal: Proceedings of the 19th Annual Meeting ISMRM, 2011: 2429.
[45]
Mutsaerts HJ, van Dalen JW, Heijtel DF, et al. Cerebral Perfusion Measurements in Elderly with Hypertension Using Arterial Spin Labeling. PLoS One, 2015, 10(8): e0133717.

PREV Initial application of fractional motion model in brain of anomalous diffusion
NEXT Research status of ASL perfusion imaging and dynamic contrast-enhanced MRI in the periphery of gliomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn