Share:
Share this content in WeChat
X
Review
MRI evaluation of hepatic iron overload: recent advances
LIU Hua-ping  LI Wen-zheng  LI Hai-lan  ZHANG You-ming 

DOI:10.12015/issn.1674-8034.2017.06.016.


[Abstract] Iron overload can be caused by hereditary hemochromatosis, hematological diseases, chronic liver disease and so on. Severe iron overload can result in liver, heart, pancreas, thyroid organs, the central nervous system, and other organ dysfunction, or even can cause death. Iron overload can result in liver damage firstly, and the liver iron concentration bring into correspondence with the body iron content. MRI can accurately noninvasive assess and monitor the liver iron concentration, provide guidance for clinical treatment. This article mainly introduces MRI-based methods for quantification of liver iron, including remaining challenges, unsolved problems and potential application prospect.
[Keywords] Liver;Iron overload;Magnetic resonance imaging

LIU Hua-ping Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China

LI Wen-zheng* Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China

LI Hai-lan Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China

ZHANG You-ming Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China

*Correspondence to: Li WZ, E-mail:liwenzhenghuazi@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of Clinical Research Fund of Xiangya Hospital, Central South University No. 2014L05
Received  2017-02-24
Accepted  2017-04-07
DOI: 10.12015/issn.1674-8034.2017.06.016
DOI:10.12015/issn.1674-8034.2017.06.016.

[1]
于德新, 李传福. 肝铁过载及MRI无创评估研究进展. 国际医学放射学杂志, 2009, 32(2): 150-152.
[2]
Cariou S, Hubert N, Leroyer P, et al. Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate. J Hepatology, 1997, 26(3): 650-658.
[3]
Kowdley KV. Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology, 2004, 127(5Suppl 1): S79-S86.
[4]
Marrogi AJ, Khan MA, van Gijssel HE, et al. Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J Natl Cancer Inst, 2001, 93(21): 1652-1655.
[5]
Gandon Y, Guyader D, Heautot JF, et al. Hemochromatosis: diagnosis and quantification of liver iron with gradient-echo MR imaging. Radiology, 1994, 193(2): 533-538.
[6]
Ernst O, Sergent G, Bonvarlet P, et al. Hepatic iron overload: diagnosis and quantification with MR imaging. AJR Am J Roentgenol, 1997, 168(5): 1205-1208.
[7]
Bonkovsky HL, Rubin RB, Cable EE, et al. Hepatic iron concentration: noninvasive estimation by means of MR imaging techniques. Radiology, 1999, 212(1): 227-234.
[8]
Gandon Y, Olivié D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet, 2004, 363(9406): 357-362.
[9]
Virtanen JM, Pudas TK, Ratilainen JA, et al. Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease. Br J Radiol, 2012, 85(1014): 162-167.
[10]
Israel J, Unger E, Buetow K, et al. Correlation between liver iron content and magnetic resonance imaging in rats. Magn Reson Med, 1989, 7(6): 629-634.
[11]
Kaltwasser JP, Gottschalk R, Schalk KP, et al. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol, 1990, 74(3): 360-363.
[12]
Dixon RM, Styles P, Al-Refaie FN, et al. Assessment of hepatic iron overload in thalassemic patients by magnetic resonance spectroscopy. Hepatology, 1994, 19(4): 904-910.
[13]
Wang ZJ, Haselgrove JC, Martin MB, et al. Evaluation of iron overload by single voxel MRS measurement of liver T2. J Magn Reson Imaging, 2002, 15(4): 395-400.
[14]
Pierre TGS, Clark PR, Chua-Anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood, 2005, 105(2): 855-861.
[15]
Hernando D, Levin YS, Sirlin CB, et al. Quantification of liver iron with MRI: State of the art and remaining challenges. J Magn Reson Imaging, 2014, 40(5): 1003-1021.
[16]
St Pierre TG, El-Beshlawy A, Elalfy M, et al. Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med, 2014, 71(6): 2215-2223.
[17]
Yassin M, Soliman AT, De Sanctis V, et al. A young adult with unintended acute intravenous iron intoxication treated with oral chelation: the use of liver ferriscan for diagnosing and monitoring tissue iron load. Mediterr J Hematol Infect Dis, 2017, 9(1): e2017008.
[18]
Peng P, Huang Z, Long L, et al. Liver iron quantification by 3 tesla MRI: Calibration on a rabbit model. J Magn Reson Imaging, 2013, 38(6): 1585-1590.
[19]
Wood JC. Guidelines for quantifying iron overload. Hematology/the education program of the American society of hematology. American Society of Hematology. Education Program, 2014, 2014(1): 210-215.
[20]
Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood, 2005, 106(4): 1460-1465.
[21]
Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star(T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J, 2001, 22(23): 2171-2179.
[22]
Ibrahim E, Khalifa AM, Eldaly AK. The influence of the analysis technique on estimating liver iron overload using magnetic resonance imaging T2* quantification. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, 2014: 4639-4642.
[23]
郭若汨, 唐文杰, 朱叶青, 等. 磁共振IDEAL-IQ序列对肝脏脂肪变性和铁过载的诊断价值. 中山大学学报(医学科学版), 2015, 36(5): 689-692.
[24]
齐石, 赵大伟, 赵晶, 等. 相位校正多回波GRE Dixon序列在原发性肝癌诊断价值的初步探讨. 磁共振成像, 2015, 6(8): 626-630.
[25]
Anderson LJ. Assessment of iron overload with T2* magnetic resonance imaging. Progress in Cardiovascular Diseases, 2011, 54(3): 287-294.
[26]
Yokoo T, Browning JD. Fat and iron quantification in the liver: past, present, and future. Top Magn Reson Med, 2014, 23(2): 73-94.
[27]
Ryden H, Skorpil M. Quantification of severe liver iron overload using MRI offset echoes. Acta Radiologica Open, 2015, 4(5): 1-4.
[28]
Yokoo T, Yuan Q, Dimitrov I. Systematic investigation of various strategies for T2* mapping for liver iron quantification in the presence of noise. ISMRM 21st Annual Meeting & Exhibition, 20-26 April 2013, Salt Lake City, Utah, USA.
[29]
Yokoo T, Yuan Q, Senegas J, et al. Quantitative R2* MRI of the liver with rician noise models for evaluation of hepatic iron overload: simulation, phantom, and early clinical experience. J Magn Reson Imaging, 2015, 42(6): 1544-1559.
[30]
Kirk P, He T, Anderson LJ, et al. International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging, 2010, 32(2): 315-319.
[31]
Tanner MA, He T, Westwood MA, et al. Multi-center validation of the transferability of the magnetic resonance T2* technique for the quantification of tissue iron. Haematologica, 2006, 91(10): 1388-1391.
[32]
Chan WC, Tejani Z, Budhani F, et al. R2* as a surrogate measure of ferriscan iron quantification in thalassemia. J Magn Reson Imaging, 2014, 39(4): 1007-1011.
[33]
Girard OM, Ramirez R, Mccarty S, et al. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI. Contrast Media Mol Imaging, 2012, 7(4): 411-417.
[34]
Ghugre NR, Coates TD, Nelson MD, et al. Mechanisms of tissueiron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med, 2005, 54(5): 1185-1193.
[35]
Wood JC, Zhang P, Rienhoff H, et al. Liver MRI is more precise than liver biopsy for assessing total body iron balance: a comparison of MRI relaxometry with simulated liver biopsy results. Magn Reson Med, 2015, 33(6): 761-767.
[36]
张倩, 侯波, 王璐, 等. 磁共振成像技术在铁过载诊断及随访中的应用. 中华血液学杂志, 2015, 36(4): 302-306.
[37]
Sanches-Rocha L, Serpa B, Figueiredo E, et al. Comparison between multi-echo T2* with and without fat saturation pulse for quantification of liver iron overload. Magn Reson Med, 2013, 31(10): 1704-1708.
[38]
Liu T, Khalidov I, de Rochefort L, et al. A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed, 2011, 24(9): 1129-1136.
[39]
Schweser F, Deistung A, Lehr BW, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?. Neuroimage, 2011, 54(4): 2789-2807.
[40]
Haacke EM, Liu S, Buch S, et al. Quantitative susceptibility mapping: current status and future directions. Magn Reson Med, 2015, 33(1): 1-25.
[41]
王敏, 李传富. 定量磁化率成像及其在脑铁定量中的研究进展.中国中西医结合影像学杂志, 2016, 14(1): 105-108.
[42]
Dai Y, Zeng M, Li R, et al. Improving detection of siderotic nodules in cirrhotic liver with a multi-breath-hold susceptibility-weighted imaging technique. J Magn Reson Imaging, 2011, 34(2): 318-325.
[43]
Liu S, Buch S, Chen Y, et al. Susceptibility-weighted imaging: current status and future directions. NMR in Biomedicine, 2017 DOI: (4). DOI: 10.1002/nbm.3552. DOI: .
[44]
Li RK, Zeng MS, Rao SX, et al. Using a 2D multibreath-hold susceptibility-weighted imaging to visualize intratumoral hemorrhage of hepatocellular carcinoma at 3.0 T MRI: correlation with pathology. J Magn Reson Imaging, 2012, 36(4): 900-906.
[45]
Balassy C, Feier D, Peck-Radosavljevic M, et al. Susceptibility-weighted MR imaging in the grading of liver fibrosis: a feasibility study. Radiology, 2014, 270(1): 149-158.
[46]
陶冉, 崔进国, 张久权, 等. 应用磁敏感加权成像评价肝硬化患者肝脏铁沉积及其与血清铁蛋白含量的相关性. 中国医学影像学杂志, 2012, 20(5): 328-330.
[47]
严达. 磁共振SWI相位值及T2*值定量测定慢性乙型肝炎合并肝铁沉积. 南宁: 广西医科大学, 2014.
[48]
蔡春仙, 魏常辉, 赵世胜, 等. 磁敏感加权成像定量测定正常肝脾铁含量. 中国医学影像学杂志, 2013, 21(9): 656-658.
[49]
Yuan Z, Shen Z, Guo L, et al. Improving detection of siderotic nodules in patients with liver disease using 2D ESWAN technique. Acad Radiol, 2014, 21(8): 971-976.
[50]
Juhas M, Sun H, Brown MR, et al. Deep grey matter iron accumulation in alcohol use disorder. Neuroimage, 2017, 148: 115-122.
[51]
Wang Y, Spincemaille P, Liu Z, et al. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. J Magn Reson Imaging, 2017 DOI: . DOI: 10.1002/jmri.25693. [ DOI: ].
[52]
Eskreis-Winkler S, Zhang Y, Zhang J, et al. The clinical utility of QSM: disease diagnosis, medical management, and surgical planning. NMR Biomed, 2017, 30(4): DOI: 10.1002/nbm.3668. DOI: .
[53]
Sun H, Walsh AJ, Lebel RM, et al. Validation of quantitative susceptibility mapping with Perls' iron staining for subcortical gray matter. Neuroimage, 2015, 105: 486-492.
[54]
Langkammer C, Pirpamer L, Seiler S, et al. Quantitative susceptibility mapping in parkinson's disease. PLoS One, 2016, 11(9): e162460.
[55]
Sharma SD, Hernando D, Horng DE, et al. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med, 2015, 74(3): 673-683.

PREV Application of multimodal magnetic resonance imaging in the diagnosis of glioma cell proliferation
NEXT Degree centrality in different duration of patients with temporal lobe epilepsy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn