Share:
Share this content in WeChat
X
Review
Cognitive impairment in type 2 diabetes mellitus and its resting-state functional MRI
LI Kun-hua  LI Wei 

DOI:10.12015/issn.1674-8034.2017.08.014.


[Abstract] Diabetic cognitive impairment is a common complication of diabetes in the central nervous system. Resting-state functional MRI (rs-fMRI) based on blood oxygen level dependent imaging was divided into two categories: functional separation and functional integration. With the development of new technology of functional magnetic resonance imaging, the early detection of diabetic cognitive impairment becomes possible, especially the rs-fMRI with advantages of non-invasion, non-ionizing radiation and higher spatial resolution has gradually become an effective tool to study the physiological mechanisms of cognitive impairment. In our country, the type 2 diabetes mellitus accounts for more than 90% of diabetes mellitus, which has become a research hotspot. This paper briefly reviews the cognitive impairment in type 2 diabetes mellitus and its resting-state functional MRI.
[Keywords] Diabetes mellitus, type 2;Cognitive impairment;Diabetic neuropathies;Magnetic resonance imaging, functional

LI Kun-hua Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China

LI Wei* The Second Hospital of Dalian Medical University, Dalian 116021, China

*Correspondence to: Li W, E-mail: 6200257@qq.com

Conflicts of interest   None.

Received  2017-03-23
Accepted  2017-06-27
DOI: 10.12015/issn.1674-8034.2017.08.014
DOI:10.12015/issn.1674-8034.2017.08.014.

[1]
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults. Jama, 2013, 310(9): 948-959.
[2]
Strachan MW, Reynolds RM, Marioni RE, et al. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol, 2011, 7(2): 108-114.
[3]
Van Den Berg E, Reijmer YD, De Bresser J, et al. A 4 year follow-up study of cognitive functioning in patients with type 2 diabetes mellitus. Diabetologia, 2010, 53(1): 58-65.
[4]
Park CR. Cognitive effects of insulin in the central nervous system. Neurosci Biobehav Rev, 2001, 25(4): 311-323.
[5]
Watson GS, Peskind ER, Asthana S, et al. Insulin increases CSF Abeta42 levels in normal older adults. Neurology, 2003, 60(12): 1899-1903.
[6]
Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A, 2003, 100(7): 4162-4167.
[7]
Negrean M, Stirban A, Stratmann B, et al. Effects of low-and high-advanced glycation endproduct meals on macro-and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr, 2007, 85(5): 1236-1243.
[8]
Moreira PI. Alzheimer's disease and diabetes: an integrative view of the role of mitochondria, oxidative stress, and insulin. J Alzheimers Dis, 2012, 30(Suppl 2): 199-215.
[9]
Suh SW, Hamby AM, Swanson RA. Hypoglycemia, brain energetics, and hypoglycemic neuronal death. Glia, 2007, 55(12): 1280-1286.
[10]
Wright RJ, Frier BM. Vascular disease and diabetes: is hypoglycaemia an aggravating factor?. Diabetes Metab Res Rev, 2008, 24(5): 353-363.
[11]
Mogi M, Horiuchi M. Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ J, 2011, 75(5): 1042-1048.
[12]
Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev, 2007, 29(2): 83-91.
[13]
Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis. Neuroimage, 2004, 22(1): 394-400.
[14]
Cui Y, Jiao Y, Chen YC, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes, 2014, 63(2): 749-760.
[15]
Xia W, Wang S, Sun Z, et al. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology, 2013, 38(11): 2493-2501.
[16]
Wang CX, Fu KL, Liu HJ, et al. Spontaneous brain activity in type 2 diabetics revealed by amplitude of low-frequency fluctuations and its association with diabetic vascular disease: A resting-state fMRI study. Plos One, 2014, 9(10): e108883.
[17]
Zhou X, Zhang J, Chen Y, et al. Aggravated cognitive and brain functional impairment in mild cognitive impairment patients with type 2 diabetes: a resting-state functional MRI study. J Alzheimers Dis, 2014, 41(3): 925-935.
[18]
Qin DX, Zhang Q, Lin L, et al. Rs-fMRI changes of posterior cingulate cortex in type 2 diabetes mellitus patients with cognitive impairment. Chin J Behav Med & Brain Sci, 2016, 25(8): 693-697.秦冬雪,张清,林琳,等.2型糖尿病伴认知障碍者后扣带回的静息态fMRI研究.中华行为医学与脑科学杂志,2016,25(8):693-697.
[19]
Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods, 2008, 172(1): 137-141.
[20]
Zuo XN, Di Martino A, Kelly C, et al. The oscillating brain: complex and reliable. Neuroimage, 2010, 49(2): 1432-1445.
[21]
Liu DH, Duan SS, Zhang JQ, et al. Spontaneous brain activity alterations in T2DM patients with mild cognitive impairment: a resting-state fMRI study. Chin J Magn Reson Imaging, 2015, 6(3): 161-166.刘代洪,段姗姗,张久权,等.2型糖尿病伴轻度认知功能障碍患者脑静息态功能MRI研究.磁共振成像,2015,6(3):161-166.
[22]
Liu DH, Duan SS, Zhang JQ, et al. Subbands analysis of amplitude of low-frequency fluctuations in type 2 diabetes mellitus patients: a resting-state functional MRI study. Chin J Radiol, 2015, 11(49): 801-806.刘代洪,段姗姗,张久权,等.基于亚频段低频振幅分析2型糖尿病患者静息态脑功能的MRI研究.中华放射学杂志,2015,11(49):801-806.
[23]
Chen ZY, Liu MQ, Liu MY, et al. Resting-state brain functional magnetic resonance imaging in patients with type 2 diabetes. J South Med Univ, 2014, 34(8): 1083-1091.陈志晔,刘梦琦,刘梦雨,等.2型糖尿病患者脑部静息态的功能磁共振成像.南方医科大学学报,2014,34(8):1083-1091.
[24]
Liu D, Duan S, Zhang J, et al. Aberrant brain regional homogeneity and functional connectivity in middle-aged T2DM patients: A resting-state functional MRI study. Front Hum Neurosci, 2016, 10: 490.
[25]
Peng J, Qu H, Peng J, et al. Abnormal spontaneous brain activity in type 2 diabetes with and without microangiopathy revealed by regional homogeneity. Eur J Radiol, 2016, 85(3): 607-615.
[26]
Lin QS, Chen ZQ, Xiao H, et al. Resting-state brain functional magnetic resonance imaging study in type 2 diabetes mellitus. Funct Mol Med Imaging (Electronic Edition), 2015, 4(2): 645-650.林钱森,陈自谦,肖慧,等.基于局部一致性方法的2型糖尿病静息态脑功能磁共振成像研究.功能与分子医学影像学杂志:电子版,2015,4(2):645-650.
[27]
Barkhof F, Haller S, Rombouts SA. Resting-state functional MR imaging: a new window to the brain. Radiology, 2014, 272(1): 29-49.
[28]
Zhou H, Lu W, Shi Y, et al. Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neurosci Lett, 2010, 473(1): 5-10.
[29]
Xia W, Zhang B, Yang Y, et al. Poorly controlled cholesterol is associated with cognitive impairment in T2DM: a resting-state fMRI study. Lipids Health Dis, 2015, 14(1): 1-10.
[30]
Musen G, Jacobson AM, Bolo NR, et al. Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes, 2012, 61(9): 375-2379.
[31]
Chen YC, Jiao Y, Cui Y, et al. Aberrant brain functional connectivity related to insulin resistance in type 2 diabetes: a resting-state fMRI study. Diabetes Care, 2014, 37(6): 1689-1696.
[32]
Hoogenboom WS, Marder TJ, Flores VL, et al. Cerebral white matter integrity and resting-state functional connectivity in middle-aged patients with type 2 diabetes. Diabetes, 2014, 63(2): 728-738.
[33]
Chen YC, Xia W, Qian C, et al. Thalamic resting-state functional connectivity: disruption in patients with type 2 diabetes. Metab Brain Dis, 2015, 30(5): 1227-1236.
[34]
Deng LL, Liu J, Liu HH, et al. The functional connectivity of hypothalamus in T2DM patients: a resting-state fMRI study. Chin J Magn Reson Imaging, 2016, 7(4): 270-276.邓灵灵,刘珺,刘煌辉,等.2型糖尿病患者下丘脑功能连接的静息态功能磁共振研究.磁共振成像,2016,7(4):270-276.
[35]
Mansur RB, Cha DS, Woldeyohannes HO, et al. Diabetes mellitus and disturbances in brain connectivity: a bidirectional relationship. Neuromolecular Med, 2014, 16(4): 658-668.
[36]
Groves AR, Beckmann CF, Smith SM, et al. Linked independent component analysis for multimodal data fusion. Neuroimage, 2011, 54(3): 2198-2217.
[37]
Cui Y, Jiao Y, Chen HJ, et al. Aberrant functional connectivity of default-mode network in type 2 diabetes patients. Eur Radiol, 2015, 25(11): 3238-3246.
[38]
Wang XY, Li H, Lin DD, et al. Aberrant function connectivity and grey matter volume within default mode network in patients with type 2 diabetes mellitus by functional MRI. Chin J Radiol, 2016, 50(8): 576-580.王晓阳,李辉,林丹丹,等.2型糖尿病患者大脑默认模式网络功能及灰质体积改变的功能MRI研究.中华放射学杂志,2016,50(8):576-580.
[39]
Xia W, Wang S, Rao H, et al. Disrupted resting-state attentional networks in T2DM patients. Sci Rep, 2015, 5(6): 11148.
[40]
Chen Y, Liu Z, Zhang J, et al. Selectively disrupted functional connectivity networks in type 2 diabetes mellitus. Front Aging Neurosci, 2015, 7(3): 233.
[41]
Van Den Heuvel MP, Stam CJ, Boersma M, et al. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage, 2008, 43(3): 528-539.
[42]
He Y, Wang J, Wang L, et al. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PloS One, 2009, 4(4): e5226.
[43]
Fornito A, Zalesky A, Pantelis C, et al. Schizophrenia, neuroimaging and connectomics. Neuroimage, 2012, 62(4): 2296-2314.
[44]
Baggio HC, Sala-Llonch R, Segura B, et al. Functional brain networks and cognitive deficits in Parkinson's disease. Hum Brain Mapp, 2014, 35(9): 4620-4634.
[45]
Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, et al. Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity. PloS One, 2010, 5(11): e13788.

PREV The methods and quality control of fMRI research on mechanism of heroin addiction
NEXT Progress of blood oxygen level-dependent (BOLD) MRI in the kidney
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn