Share:
Share this content in WeChat
X
Clinical Article
Voxel-based morphometry MRI primary study of brain grey matter between Tibetan bilinguals and Chinese monolinguals
FENG Xiang  BAO Hai-hua  WANG Fang-fang  HE Ying  QIN Zong-yuan 

DOI:10.12015/issn.1674-8034.2017.10.004.


[Abstract] Objective: Voxel-based morphometry (VBM) was applied to investigate the effect of second language acquisition on brain microstructure.Materials and Methods: By PHILIPS 3.0 T magnetic resonance of 35 skilled master Tibetan-Chinese bilinguals Tibetan health volunteers and 35 Chinese monolinguals healthy volunteers underwent whole brain scan, then we applied the VBM technology to analyze the obtained T1-3D brain structural images.Results: Compared to Chinese, Tibetan bilinguals brain areas increased in grey matter volume including: left postcentral gyrus, left supramarginal gyrus, left superior temporal gyrus, right superior temporal gyrus, right putamen, right inferior parietal lobule, cerebellar brain regions.Conclusion: The acquisition of second language can lead to an increase in the volume of some brain language areas, and bilingual learning can promote the development of cortical areas in th brain language.
[Keywords] Tibetan;Tibetan-Chinese bilingual;Chinese;Magnetic resonance imaging;Gray matter

FENG Xiang Medical Imaging Center, The Affiliated Hospital of Qinghai University, Xi'ning 810001, China

BAO Hai-hua* Medical Imaging Center, The Affiliated Hospital of Qinghai University, Xi'ning 810001, China

WANG Fang-fang Medical Imaging Center, The Affiliated Hospital of Qinghai University, Xi'ning 810001, China

HE Ying Medical Imaging Center, The Affiliated Hospital of Qinghai University, Xi'ning 810001, China

QIN Zong-yuan Medical Imaging Center, The Affiliated Hospital of Qinghai University, Xi'ning 810001, China

*Correspondence to: Bao HH, E-mail: baohelen2@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No.81060117 International Cooperation Program of Qinghai Science and Technology Department No. 2012-H-807
Received  2017-06-27
Accepted  2017-08-31
DOI: 10.12015/issn.1674-8034.2017.10.004
DOI:10.12015/issn.1674-8034.2017.10.004.

[1]
Draganski B, Gaser C, Busch V, et al. Neuroplasicity: changes in grey matter induced by training. Natural, 2004, 427(6972): 311-312.
[2]
Zou L, Ding G, Abutalebi J, et al. Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 2012, 48(9): 1197-206.
[3]
Mechelli A, Crinion JT, Noppeney U, et al. Neurolinguistics: structural plasticity in the bilingual brain. Nature, 2004, 431(7010): 757.
[4]
Gaser C, Schlaug G. Brain structures differ between musician and non-musicians. Neurosci, 2003, 23(27): 9240-9245.
[5]
Maguire EA, Gadian DG, Johnsrude IS, et al. Navigation-related sturctural change in the hippocampi of taxi dricers. Proc Natl Acad Sci USA, 2000, 97(8): 4398-4403.
[6]
晁芳.白—汉双语者与汉族非双语者的全脑结构与功能差异研究.昆明:昆明医科大学, 2013.
[7]
Siok WT, Perfetti CA, Tan LH, et al. Biological abnormality of impaired reading is constrained by culture. Nature, 2004, 431(7004):71-76.
[8]
杨振燕,赵小虎,戴工华.中英文语言活动区功能磁共振成像研究.中国临床康复, 2003, 7(10): 1492-1494.
[9]
王云玲.新疆维吾尔族多语者语言功能区的fMRI的研究.乌鲁木齐:新疆医科大学, 2012.
[10]
Tan LH, Feng CM, Gao JH, et al. An fMRI study with written Chinese. Neuroreport, 2000, 12(1): 83-88.
[11]
Pierce LJ, Klein D, Chen JK, et al. Mapping the unconscious maintenance of a lost first language. Proc Natl Acad Sci U S A, 2014, 111 (48): 17314-17319.
[12]
Catani M, Jones DK, Ffutche DH. Perisylvian langguage networks of the human brian. Ann Neuro, 2005, 57(1): 8-16.
[13]
Chandrasekaran B, Chan AH, Wong PC. Neural processing of what and who information during spoken languange processing. Cogn Neuropsychol, 2011, 23(10): 2690-2700.
[14]
Tan IH, Chen I, Yip V, et al. Activity levels in the left hemisphrer caudate-fusiform circuit predict how well a second language will be learned. Proc Natl Acad Sci U S A, 2011, 10(6): 2540-2544.
[15]
Szaflarski JP, Vannest J, Wu SW, et al. Excitatory repetitive transcranial magnetic stimulation induces improvements in chronic post-stroke aphasia. Med Sci Monit, 2011, 17(3): 132-139.
[16]
Kozub J, Urbanik A, Chrzan R, et al. Presurgical functional brain examination MR (fMRI). Przegl lek, 2010, 67(4): 326-329.
[17]
Barbeau EB, Chai XJ, Chen JK, et al. The role of the left inferior parietal lobule in second language learning: An intensive language training fMRI study. Neuropsychologia, 2016, 10(3): 169-176.
[18]
Jasińska KK, Petitto LA. Development of neural systems for reading in the monolingual and bilingual brain: new insights from functional near infrared spectroscopy neuroimaging. Dev Neuropsychol, 2014,39(6): 421-439.
[19]
朱丽娜.维吾尔族汉语功能区的磁共振研究.乌鲁木齐:新疆医科大学, 2010.
[20]
邢一兰.基底神经节参与中英文书写—-来自PET-CT的证据.广州:南方医科大学, 2010.
[21]
Gil RS, Gatignol P, Capelle L, et al. The role of dominant striatum in language:a study using intraoperative electrical stimulations. J Neurol Neurosurg Psychiatry, 2005, 76(7): 940-946.
[22]
Pillai JJ, Araque JM, Allison JD, et al. Functional MRI study of semantic and phonological language processing in bilingual subject: preliminary findings. Neuroimage, 2003, 19(3): 565-576.
[23]
揭冰,赵小虎,杨振燕,等.小脑语言功能的fMRI初步评价.同济大学学报, 2005, 26(6): 22-24.

PREV The value of conventional MRI texture analysis in diagnosing temporal lobe epilepsy by hippocampal sclerosis
NEXT Intravoxel incoherent motion diffusion weighted magnetic resonance imaging for differentiation between benign and malignant thyroid nodules
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn