Share:
Share this content in WeChat
X
Clinical Article
MR evaluation of normal fetal cerebellar vermis development
WANG Tong  ZHANG Jun 

DOI:10.12015/issn.1674-8034.2018.01.006.


[Abstract] Objective: By measuring normal fetal cerebellar vermis, adjacent structure and the angle value, calculate reference range, analyze development of different gestational age.Materials and Methods: MR images of 856 normal fetal heads in the middle and late pregnancy (from January 2011 to February 2017) were collected, separately measure vermis diameter, superior/inferior vermis height, area, vermis/posterior cranial fossa, vermis/anterior posterior diameter of the four ventricle, BV°, BT° to observe the vermis development and statistical analysis.Results: The overall and gestational age showed a linear positive correlation for linear growth, which the median sagittal anteroposterior diameter, vermis area and gestational age had the strongest correlation. Vermis/anterior posterior diameter of the four ventricle had the worst correlation. With the increase of gestational age, BV angle showed a decreasing trend, but BT was not correlated with the change of age.Conclusions: Fetal MR can reliably depict vermis of anatomical structure, dynamically evaluate the development of the vermis according to the normative reference data.
[Keywords] Fetus;Magnetic resonance imaging;Cerebellar vermis;Fetal development

WANG Tong Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

ZHANG Jun* Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

*Correspondence to: Zhang J, E-mail: zhangjl@sj-hospital.org

Conflicts of interest   None.

Received  2017-08-04
Accepted  2017-11-18
DOI: 10.12015/issn.1674-8034.2018.01.006
DOI:10.12015/issn.1674-8034.2018.01.006.

[1]
Vatansever D, Kyriakopoulou V, Allsop JM. Multidimensional analysis of fetal posterior fossa in health and disease. Cerebellum, 2013, 12(5): 632-644.
[2]
Clouchoux C, Guizard N, Evans AC. Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol, 2012, 206(2): 173.
[3]
Van Doorn M, Oude Rengerink K, Newsum EA. Added value of fetal MRI in fetuses with suspected brain abnormalities on neurosonography: a systematic review and meta-analysis. Maternal-Fetal Neonatal Med, 2016, 29(18): 2949-2961.
[4]
Sajan SA, Waimey KE, Millen KJ. Novel approaches to studying the genetic basis of cerebellar development. Cerebellum, 2010, 9(3): 272-283.
[5]
Kyriakopoulou V, Vatansever D, Elkommos S. Cortical overgrowth in fetuses with isolated ventriculomegaly. Cerebral Cortex, 2014, 24(8): 2141-2150.
[6]
Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage, 2012, 59(2): 1560-1570.
[7]
Patek KJ, Kline-Fath BM, Hopkin RJ. Posterior fossa anomalies diagnosed with fetal MRI: associated anomalies and neurodevelopmental outcomes. Prenatal Diagn, 2012, 32(1): 75-82.
[8]
Triulzi F, Parazzini C, Righini A. MRI of fetal and neonatal cerebellar development. Semin Fetal Neonatal Med, 2005, 10(5): 411-420.
[9]
Prayer D, Brugger PC, Prayer L. Fetal MRI: techniques and protocols. Pediatr Radio, 2004, 34(9): 685-693.
[10]
Hatab MR, Kamourieh SW, Twickler DM. MR volume of the fetal cerebellum in relation to growth. J Magn Reson Imaging, 2008, 27(4): 840-845.
[11]
Scott JA, Hamzelou KS, Rajagopalan V. 3D morphometric analysis of human fetal cerebellar development. Cerebellum, 2012, 11(3): 761-770.
[12]
Krishnamurthy U, Neelavalli J, Mody S. MR imaging of the fetal brain at 1.5 T and 3.0 T field strengths: comparing specific absorption rate (SAR) and image quality. Perinatal Med, 2015, 43(2): 209-220.
[13]
Pier DB, Gholipour A, Afacan O. 3D super-resolution motion-corrected MRI: validation of fetal posterior fossa measurements. Neuroimaging, 2016, 26(5): 539-544.
[14]
Gholipour A, Estroff JA, Barnewolt CE. Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Radiol Surg, 2011, 6(3): 329-339.
[15]
Habas PA, Kim K, Corbett-Detig JM. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage, 2010, 53(2): 460-470.
[16]
Liu F, Zhang Z, Lin X. Development of the human fetal cerebellum in the second trimester: a post mortem magnetic resonance imaging evaluation. J Anat, 2011, 219(5): 582-588.
[17]
Kim K, Habas PA, Rousseau F. Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans Med Imaging, 2010, 29(1): 146-158.
[18]
Studholme C. Mapping fetal brain development in utero using magnetic resonance imaging: the big bang of brain mapping. Annu Rev Biomed Eng, 2011, 13(1): 345-368.
[19]
Weisstanner C, Gruber GM, Brugger PC. Fetal MRI at 3 T: ready for routine use? Br J Radiol2017, 90: 20160362.

PREV Relationship between focal white matter hyperintensity and minimal hepatic encephalopathy in patients with hepatitis B virus-related cirrhosis
NEXT Functional connectivity density alterations at resting state in neuromyelitis optica patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn