Share:
Share this content in WeChat
X
Review
Application and development of multimodal MRI in the diagnosis of early AD
HAO Xiao-yong  WANG Xiao-chun 

DOI:10.12015/issn.1674-8034.2018.01.015.


[Abstract] Alzheimer's disease (AD) is the most common degenerative disease of the central nervous system in middle-aged and elderly people. It is characterized by progressive cognitive impairment and non-behavioral cognitive impairment. In recent years, with the development of the magnetic resonance imaging, multimodal MRI, which including structural magnetic resonance imaging (sMRI), magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI), susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM) and functional MRI (fMRI), plays a very important role in the diagnosis of early AD. The aim of this study was to review the application and development of the multimodal MRI in the diagnosis of early Alzheimer's disease.
[Keywords] Alzheimer disease;Magnetic resonance imaging

HAO Xiao-yong Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

WANG Xiao-chun* Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China

*Corresponding to: Wang XC, E-mail: 2010xiaochun@163.com

Conflicts of interest   None.

Received  2017-09-01
Accepted  2017-11-18
DOI: 10.12015/issn.1674-8034.2018.01.015
DOI:10.12015/issn.1674-8034.2018.01.015.

[1]
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol, 2014, 88(4): 640-651.
[2]
Jia J, Wang F, Wei C, et al. The prevalence of dementia in urban and rural areas of China. Alzheimers Dement, 2014,10(1): 1-9.
[3]
Okonkwo OC, Xu G, Dowling NM, et al. Family history of Alzheimer disease predicts hippocampal atrophy in healthy middle-aged adults. Neurology, 2012, 78(22): 1769-1776.
[4]
Dolek N, Saylisoy S, Ozbabalik D, et al. Comparison of hippocampal volume measured using magnetic resonance imaging in Alzheimer's disease, vascular dementia, mild cognitive impairment and pseudodementia. J Int Med Res, 2012, 40(2): 717-725.
[5]
Stout JC, Bondi MW, Jernigan TL, et al. Regional cerebral volume loss associated with verbal learning and memory in dementia of the Alzheimer type. Neuropsychology, 1999, 13(2): 188-197.
[6]
Whitwell JL, Przybelski SA, Weigand SD, et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain, 2007, 130(Pt 7): 1777-1786.
[7]
Varon D, Loewenstein DA, Potter E, et al. Minimal atrophy of the entorhinal cortex and hippocampus: progression of cognitive impairment. Dement Geriatr Cogn Disord, 2011, 31(4): 276-283.
[8]
Cavedo E, Boccardi M, Ganzola R, et al. Local amygdala structural differences with 3 T MRI in patients with Alzheimer disease. Neurology, 2011, 76(8): 727-733.
[9]
Long X, Chen L, Jiang C, et al. Prediction and classification of Alzheimer disease based on quantification of MRI deformation. PLoS One, 2017, 12(3): e173372.
[10]
Jimenez-Huete A, Estevez-Sante S. The anteroposterior and primary-to-posterior limbic ratios as MRI-derived volumetric markers of Alzheimer's disease. J Neurol Sci, 2017, 378(2017): 110-119.
[11]
Zanchi D, Giannakopoulos P, Borgwardt S, et al. Hippocampal and amygdala gray matter loss in elderly controls with subtle cognitive decline. Front Aging Neurosci, 2017, 9(2017): 50.
[12]
Loos C, Achten E, Santens P. Proton magnetic resonance spectroscopy in Alzheimer's disease, a review. Acta Neurol Belg, 2010,110(4): 291-298.
[13]
Schott JM, Frost C, MacManus DG, et al. Short echo time proton magnetic resonance spectroscopy in Alzheimer's disease: a longitudinal multiple time point study. Brain, 2010, 133(11): 3315-3322.
[14]
Xiao H, Wu YX, Ni P, et al. Magnetic Resonance spectroscopy study on posterior cingulate cortex in Alzheimer's disease. Chin Med Devices, 2014, (11): 11-14.肖慧,吴应行,倪萍,等.阿尔茨海默病后扣带回磁共振波谱成像研究.中国医疗设备, 2014, (11): 11-14.
[15]
Kantarci K, Jack CJ, Xu YC, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: a 1H MRS study. Neurology, 2000, 55(2): 210-217.
[16]
Franczak M, Prost RW, Antuono PG, et al. Proton magnetic resonance spectroscopy of the hippocampus in patients with mild cognitive impairment: a pilot study. J Comput Assist Tomogr, 2007, 31(5): 666-670.
[17]
Guo Z, Liu X, Hou H, et al. (1)H-MRS asymmetry changes in the anterior and posterior cingulate gyrus in patients with mild cognitive impairment and mild Alzheimer's disease. Compr Psychiatry, 2016, 69(2016): 179-185.
[18]
Gao F, Barker PB. Various MRS application tools for Alzheimer disease and mild cognitive impairment. AJNR Am J Neuroradiol, 2014, 35(6Suppl): S4-S11.
[19]
Zhang Y, Schuff N, Jahng GH, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 2007, 68(1): 13-19.
[20]
Bozzali M, MacPherson SE, Cercignani M, et al. White matter integrity assessed by diffusion tensor tractography in a patient with a large tumor mass but minimal clinical and neuropsychological deficits. Funct Neurol, 2012, 27(4): 239-246.
[21]
Li H, Tao L, Ni P, et al. Study on Diffusion Tensor Imaging of Alzheimer's patients. China Med Devices, 2014(11): 1-4.李辉,陶磊,倪萍,等.阿尔茨海默病患者弥散张量成像研究.中国医疗设备, 2014, (11): 1-4.
[22]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6): 1432-1440.
[23]
Hu R. Diffusion kurtosis imaging study of brain microstructure in Alzheimer's disease. Dalian Med University, 2014.胡瑞.阿尔茨海默病脑实质微观结构的弥散峰度成像研究.大连医科大学, 2014.
[24]
Falangola MF, Jensen JH, Tabesh A, et al. Non-gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer's disease. Magn Reson Imaging, 2013, 31(6): 840-846.
[25]
Wang J. ApoEε4 allelefor mild cognitive impairment and Alzheimer's disease brain microstructure influence in diffusion kurtosis imaging research study. Shanxi Med University, 2016.王军. ApoEε4等位基因对轻度认知障碍和阿尔茨海默病脑微观结构影响的DKI研究.山西医科大学, 2016.
[26]
Chen Y, Sha M, Zhao X, et al. Automated detection of pathologic white matter alterations in Alzheimer's disease using combined diffusivity and kurtosis method. Psychiatry Res, 2017, 264(2017): 35-45.
[27]
Wang D, Li YY, Luo JH, et al. Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging. Arch Gerontol Geriatr, 2014, 59(2): 439-449.
[28]
Li SY, He HJ, Feng XY, et al. Evaluation on the changes of brain iron deposition in patientswith Alzheimer disease using SWI phase value. Chin J Med Imaging Technol, 2011, 27(4): 698-701.李思瑶,何慧瑾,冯晓源,等.磁敏感加权成像相位值评估阿尔茨海默病脑内铁沉积.中国医学影像技术, 2011, 27(4): 698-701.
[29]
Wang D, Zhu D, Wei XE, et al. Using susceptibility-weighted images to quantify iron deposition differences in amnestic mild cognitive impairment and Alzheimer's disease. Neurol India, 2013, 61(1): 26-34.
[30]
Zhu WZ, Zhong WD, Wang W, et al. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology, 2009, 253(2): 497-504.
[31]
Huang XT, Qian ZM, He X, et al. Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease. Neurobiol Aging, 2014, 35(5): 1045-1054.
[32]
Hwang EJ, Kim HG, Kim D, et al. Texture analyses of quantitative susceptibility maps to differentiate Alzheimer's disease from cognitive normal and mild cognitive impairment. Med Phys, 2016, 43(8): 4718.
[33]
Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995, 34(4): 537-541.
[34]
Binnewijzend MA, Schoonheim MM, Sanz-Arigita E, et al. Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiol Aging, 2012, 33(9): 2018-2028.
[35]
Hu ZJ, Sheng C, Sun Y, et al. Structure and resting function MRI features of high- risk population of Alzheimer's disease. Chin J Neurol, 2014, 47(12): 824-831.胡忠婕,盛灿,孙宇,等.阿尔茨海默病高风险人群的结构和静息态功能MRI特征.中华神经科杂志, 2014,47(12): 824-831.
[36]
Kim J, Kim YH, Lee JH. Hippocampus-precuneus functional connectivity as an early sign of Alzheimer's disease: a preliminary study using structural and functional magnetic resonance imaging data. Brain Res, 2013, 1495: 18-29.
[37]
Bai F, Watson DR, Yu H, et al. Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Res, 2009, 1302: 167-174.
[38]
Zhang HY, Wang SJ, Liu B, et al. Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology, 2010, 256(2): 598-606.
[39]
Galvin JE, Price JL, Yan Z, et al. Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease. Neurology, 2011, 76(21): 1797-1803.
[40]
Buckley RF, Schultz AP, Hedden T, et al. Functional network integrity presages cognitive decline in preclinical Alzheimer disease. Neurology, 2017, 89(1): 29-37.

PREV The research progress of early diagnose of Alzheimer,s disease by resting state functional magnetic resonance
NEXT Locating the coordinates of globus pallidus internus using MR imaging-based method in Parkinson,s disease surgery
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn