Share:
Share this content in WeChat
X
Review
Application of quantitative magnetic susceptibility weighted imaging in acute ischemic stroke
LI Dan  WANG Xiao-chun 

DOI:10.12015/issn.1674-8034.2018.04.009.


[Abstract] Susceptibility weighted imaging (SWI) is an imaging technology by using the difference of tissue magnetic susceptibility, which is very sensitive to anoxic blood and intracranial mineral deposition. It has been widely used in the diagnosis of acute ischemic stroke. However, SWI can not be used for quantitative determination of magnetic susceptibility. With the development of quantitative susceptibility mapping (QSM), this defect is gradually being made up. QSM is a new, non-invasive technique for assessing magnetic susceptibility differences between magnetic tissues in vivo based on magnetic gradient echo magnetic resonance phase data. It realizes the quantification of magnetic substances in the body by measuring the susceptibility value of the magnetic substances. Currently, it has a variety of applications in quantifying iron content, calcification and venous oxygen saturation in vivo. In this paper, the basic principle of quantitative magnetic susceptibility weighted imaging and its application in acute ischemic stroke are summarized.
[Keywords] Stroke;Susceptibility weighted imaging;Magnetic resonance imaging;Quantitative susceptibility mapping

LI Dan Shanxi Medical University, Taiyuan 030000, China

WANG Xiao-chun* Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China

*Corresponding to: Wang XC, E-mail: 13466815941@163.com

Conflicts of interest   None.

Received  2017-09-06
Accepted  2017-12-08
DOI: 10.12015/issn.1674-8034.2018.04.009
DOI:10.12015/issn.1674-8034.2018.04.009.

[1]
Liu C, Li W, Tong KA, et al. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging, 2015, 42(1): 23-41.
[2]
Haacke EM, Liu S, Buch S, et al. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging, 2015, 33(1): 1-25.
[3]
王帅,段昶,张萍,等.磁共振图像中磁量图技术研究进展.生物医学工程学杂志, 2015, 32(5): 1131-1134.
[4]
Liu C, Wei H, Gong NJ, et al. Quantitative susceptibility mapping: contrast mechanisms and clinical applications. Tomography, 2015, 1(1): 3-17.
[5]
Chalela JA, Haymore JB, Ezzeddine MA, et al. The hypointense MCA sign. Neurology, 2002, 58(10): 1470.
[6]
Huang Y, Mei WL, Liu HQ, et al. Diagnostic value of clot burden score of susceptibility vessel sign in arterial thrombosis of acute ischemic stroke and its association with prognosis. Natl Med J China, 2017, 97(1): 7-11.
[7]
Payabvash S, Benson JC, Taleb S, et al. Susceptible vessel sign: identification of arterial occlusion and clinical implications in acute ischaemic stroke. Clin Radiol, 2017, 72(2): 116-122.
[8]
夏爽,闫铄,柴超,等.大脑中动脉磁敏感加权成像的磁敏感征对临床病人的影响.国际医学放射学杂志, 2014, 37(4): 307-310, 322.
[9]
Liebeskind DS, Sanossian N, Yong WH, et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke, 2011, 42(5): 1237-1243.
[10]
Yamamoto N, Satomi J, Yamamoto Y, et al. The susceptibility vessel sign containing two compositions on 3-tesla T2*-weighted image and single corticosubcortical infarct on diffusion-weighted image are associated with cardioembolic stroke. J Neurol Sci, 2015, 359(1-2): 141-145.
[11]
Yan S, Hu H, Shi Z, et al. Morphology of susceptibility vessel sign predicts middle cerebral artery recanalization after intravenous thrombolysis. Stroke, 2014, 45(9): 2795-2797.
[12]
Ritzenthaler T, Lacalm A, Cho TH, et al. Sequential MR assessment of the susceptibility vessel sign and arterial occlusion in acute stroke. J Neuroimaging, 2015, 26(3): 355-359.
[13]
王昊,薛静,高培毅,等.磁敏感血管征对预测急性缺血性脑卒中静脉溶栓后血管再通的价值.放射学实践, 2016, 31(7): 599-603.
[14]
Bourcier R, Volpi S, Guyomarch B, et al. Susceptibility vessel sign on MRI predicts favorable clinical outcome in patients with anterior circulation acute stroke treated with mechanical thrombectomy. AJNR AM Neuroradiol, 2015, 36(12): 2346-2353.
[15]
Lou Y, Gong Z, Zhou Y, et al. Increased susceptibility of asymmetrically prominent cortical veins correlates with misery perfusion in patients with occlusion of the middle cerebral artery. Eur Radiol, 2017, 27(6): 2381-2390.
[16]
Xu B, Liu T, Spincemaille P, et al. Flow compensated quantitative susceptibility mapping for venous oxygenation imaging. Magn Reson Med, 2014, 32(2): 438-445.
[17]
Xia S, Utriainen D, Tang J, et al. Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke. Magn Reson Imaging, 2014, 32(10): 1272-1276.
[18]
Yu X, Yuan L, Jackson A, et al. Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke. AJNR Am J Neuroradiol, 2015, 37(3): 423-429.
[19]
Mucke J, Möhlenbruch M, Kickingereder P, et al. Asymmetry of deep medullary veins on susceptibility weighted MRI in patients with acute MCA stroke is associated with poor outcome. PLoS One, 2015, 10(4): e0120801.
[20]
Payabvash S, Benson JC, Taleb S, et al. Prominent cortical and medullary veins on susceptibility-weighted images of acute ischaemic stroke. Br J Radiol, 2016, 89(1068): 20160714.
[21]
Verma RK, Hsieh K, Gratz PP, et al. Leptomeningeal collateralization in acute ischemic stroke: impact on prominent cortical veins in susceptibility-weighted imaging. Eur J Radiol, 2014, 83(8): 1448-1454.
[22]
Hsieh MC, Tsai CY, Liao MC, et al. Quantitative susceptibility mapping-based microscopy of magnetic resonance venography (QSM-mMRV) for in vivo morphologically and functionally assessing cerebromicrovasculature in rat stroke model. PloS One, 2016, 11(3): e0149602.
[23]
Luo S, Yang L, Wang L. Comparison of susceptibility-weighted and perfusion-weighted magnetic resonance imaging in the detection of penumbra in acute ischemic stroke. J Neuroradiol, 2014, 42(5): 255-260.
[24]
Payabvash S, Taleb S, Benson JC, et al. Susceptibility-diffusion mismatch in middle cerebral artery territory acute ischemic stroke: clinical and imaging implications. Acta Radiol, 2016, 58(7): 876-882.
[25]
Dejobert M, Cazals X, Annan M, et al. Susceptibility-diffusion mismatch in hyperacute stroke: correlation with perfusion-diffusion mismatch and clinical outcome. J Stroke Cerebrovasc Dis, 2016, 25(7): 1760-1766.
[26]
Park MG, Yeom JA, Baik SK, et al. Total mismatch of diffusion-weighted imaging and susceptibility-weighted imaging in patients with acute cerebral ischemia. J Neuroradiol, 2017, 44(5): 308-312.
[27]
Chen W, Zhu W, Kovanlikaya I, et al. Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. Radiology, 2014, 270(2): 496-505.
[28]
文小检,刘筠,许亮. SWI对急性脑梗死出血性转化及早期预后的预测价值.临床放射学杂志, 2015, 34(1): 14-17.
[29]
徐超,陈智才,唐欢,等.磁敏感加权成像毛刷征预测急性缺血性卒中患者静脉溶栓后出血转化的意义.浙江大学学报医学版, 2015, 44(6): 625-631.
[30]
Bai Q, Zhao Z, Sui H, et al. Susceptibility-weighted imaging for cerebral microbleed detection in super-acute ischemic stroke patients treated with intravenous thrombolysis. Neurol Res, 2013, 35(6): 586-593.
[31]
Zhao G, Sun L, Wang Z, et al. Evaluation of the role of susceptibility-weighted imaging in thrombolytic therapy for acute ischemic stroke. J Clin Neurosci, 2017, 40(1): 175-179.
[32]
Hsu CC, Kwon GNC, Hapugoda S, et al. Susceptibility weighted imaging in acute cerebral ischemia: review of emerging technical concepts and clinical applications. Neuroradiol J, 2017, 30(2): 109-119.

PREV Primary myeloid sarcoma in intraspinal: one case report
NEXT Progress in the study of functional magnetic resonance imaging (fMRI) brain networks in the depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn