Share:
Share this content in WeChat
X
Review
Advanced research of new MRI techniques for bilateral hippocampal and posterior cingulate gyrus injury in type 2 diabetes mellitus
LIU Nian-jun  LIU Mao-sen  XIN Wen-long  GUO Shun-lin 

DOI:10.12015/issn.1674-8034.2018.06.014.


[Abstract] Type 2 diabetes is a chronic metabolic disease increased by blood glucose, often accompanied with heart, brain, kidney and other organs injury and complications. Long term chronic hyperglycemia can lead to pathophysiological changes in hippocampus and posterior cingulate gyrus in diabetic patients, and damage to the microstructure, leading to cognitive, memory and other brain function disorder. The specific pathogenesis is very complex, the research is still in the exploratory stage. Magnetic resonance imaging technique combined with image, structure and function, can detect early possible pathology, metabolism and physiological functions changes in T2DM of hippocampus and posterior cingulate. It is expected to become an important examination method to explore the pathogenesis of cognitive impairment, quantitative assessment and auxiliary diagnosis.
[Keywords] Diabetes mellitus, type 2;Cognitive impairment;Magnetic resonance imaging;Hippocampus;Damage mechanism

LIU Nian-jun Lanzhou University, Lanzhou 730000, China; Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

LIU Mao-sen Lanzhou University, Lanzhou 730000, China; Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

XIN Wen-long Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

GUO Shun-lin* Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

*Corresponding to: Guo SL, E-mail: guoshunlin@msn.com

Conflicts of interest   None.

Received  2017-10-31
Accepted  2018-04-10
DOI: 10.12015/issn.1674-8034.2018.06.014
DOI:10.12015/issn.1674-8034.2018.06.014.

[1]
刘子琪,刘爱萍,王培玉.中国糖尿病患病率的流行病学调查研究状况.中华老年多器官疾病杂志, 2015, 14(7): 547-550.
[2]
钱云.糖尿病管理关注的不仅仅是降血糖.江苏卫生保健, 2016(3): 4-5.
[3]
Nathan DM, DCCT/Edic research group. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care, 2014, 37(1): 9-16.
[4]
Vlassenko AG, Vaishnavi SN, Couture L, et al. Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. PNAS, 2010, 107(41): 17763-17767.
[5]
王晖.老年大鼠麻醉后学习记忆能力的变化与海马乙酰胆碱含量的关系——活体脑微透析研究.北京:首都医科大学, 2010.
[6]
Woolf NJ, Butcher LL. Cholinergic systems mediate action from movement to higher consciousness. Behav Brain Res, 2011, 221(2): 488-498.
[7]
Zhang J, Liu Z, Li Z, et al. Disrupted white matter network and cognitive decline in type 2 diabetes patients. J Alhzeimers Dis, 2016, 53(1): 185-195.
[8]
Manschot SM, Brands AMA, van der Grond J, et al. Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes, 2006, 55(4): 1106-1113.
[9]
Tabara Y, Igase M, Saito I, et al. Association of hematological parameters with insulin resistance, insulin sensitivity, and asymptomatic cerebrovascular damage: the J-SHIP and Toon Health Study. Clin Hemorheol Microcirc, 2013, 55(3): 297-311.
[10]
Karczewska-Kupczewska M, Lelental N, Adamska A, et al. The influence of insulin infusion on the metabolism of amyloidβpeptides in plasma. Alzheimer's & Dementia, 2013, 9(4): 400-405.
[11]
Strachan MWJ, Reynolds RM, Marioni RE, et al. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol, 2011, 7(2): 108-114.
[12]
Marioni E, Strachan MWJ, Reynolds RM, et al. Association between raised inflammatory markers and cognitive decline in elderly people with type 2 diabetes. Diabetes, 2010, 59(3): 710-713.
[13]
Tong J, Geng H, Zhang Z, et al. Brain metabolite alterations demonstrated by proton magnetic resonance spectroscopy in diabetic patients with retinopathy. Magn Reson Imaging, 2014, 32(8): 1037-1042.
[14]
Trudeau F, Gagnon S, Massicotte G. Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol, 2004, 490(1): 177-186.
[15]
Stranahan AM, Arumugam TV, Cutler RG, et al. Diabetes impairs hippocampal function via glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci, 2008, 11(3): 309.
[16]
Sato H, Takahashi T, Sumitani K, et al. Glucocorticoid generates ROS to induce oxidative injury in the hippocampus, leading to impairment of cognitive function of rats. J Clin Biochem Nutr, 2010, 47(3): 224-232.
[17]
Duarte JM, Carvalho RA, Cunha RA, et al. Consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J Neurochem, 2009, 111(2): 368-379.
[18]
周红,卢万俊,滕皋军,等. 2型糖尿病患者认知功能及海马氢质子磁共振波谱研究.中国医学影像技术, 2009, 25(8): 1367-1370.
[19]
陆雪芳. 2型糖尿病脑损伤患者双侧海马1H-MRS代谢物与认知功能的相关性研究.大连:大连医科大学, 2015.
[20]
Sahin I, Alkan A, Keskin L, et al. Evaluation of in vivo cerebral metabolism on proton magnetic resonance spectroscopy in patients with impaired glucose tolerance and type 2 diabetes mellitus. J Diabetes Complicat, 2008, 22(4): 254-260.
[21]
Van der Jeugd A, Blum D, Raison S, et al. Observations in THY-Tau22 mice that resemble behavioral and psychological signs and symptoms of dementia. Behav Brain Res, 2013, 24(2): 34-39.
[22]
Ronald JA, Chen Y, Bernas L, et al. Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits. Brain, 2009, 132(5): 1346-1354.
[23]
Preti MG, Baglio F, Laganà MM, et al. Assessing corpus callosum changes in Alzheimer's disease: comparison between tract-based spatial statistics and atlas-based tractography. PLoS One, 2012, 7(4): e35856.
[24]
Francis GJ, Martinez JA, Liu WQ, et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain, 2008, 131(Pt 12): 3311.
[25]
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci, 2008, 1124(1): 1-38.
[26]
Musen G, Jacobson AM, Bolo NR, et al. Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes, 2012, 61(9): 2375-2379.
[27]
Zhou H, Lu W, Shi Y, et al. Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neurosci Lett, 2010, 473(1): 5-10.
[28]
陈志晔,刘梦琦,刘梦雨,等. 2型糖尿病患者脑部静息态的功能磁共振成像.南方医科大学学报, 2014, 34(8): 1083-1091.
[29]
张水花,王秀河.动脉自旋标记灌注成像在阿尔茨海默病中的研究现状与展望.临床放射学杂志, 2013, 32(11): 1677-1679.
[30]
Chen Y, Wolk DA, Reddin JS, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology, 2011, 77(22): 1977-1985.
[31]
Last D, Alsop DC, Abduljalil AM, et al. Global and regional effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity. Diabetes Care, 2007, 30(5): 1193-1199.
[32]
Cui Y, Jiao Y, Chen YC, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes, 2014, 63(2): 749-760.
[33]
刘雯文. 3.0 T磁共振SWI在2型糖尿病脑微出血与认知功能相关性的临床研究.衡阳:南华大学, 2015.
[34]
De Reuck J, Auger F, Cordonnier C, et al. Comparison of 7.0 T T2*-magnetic resonance imaging of cerebral bleeds in post-mortem brain sections of Alzheimer patients with their neuropathological correlates. Cerebrovasc Dis, 2011, 31(5): 511-517.
[35]
Zhu W, Zhong W, Wang W, et al. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology, 2009, 253(2): 497-504.
[36]
王倩.多模态MRI在T2DM脑损伤评价的实验及临床研究.天津:天津医科大学, 2014.
[37]
Sims R, Madhere S, Callender C, et al. Patterns of relationships between cardiovascular disease risk factors and neurocognitive function in African Americans. Ethn Dis, 2008, 18(4): 471-476.
[38]
胡晓飞,张久权,张艳玲,等.帕金森病轻度认知功能障碍:基于体素的全脑灰质形态学研究.中国医学影像技术, 2013, 29(1): 24-29.
[39]
Womack KB, Diaz-Arrastia R, Aizenstein HJ, et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch Neurol, 2011, 68(3): 329-337.
[40]
Northam EA, Rankins D, Lin A, et al. Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care, 2009, 32(3): 445-450.
[41]
Roberts RO, Knopman DS, Przybelski SA, et al. Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology, 2014, 82(13): 1132-1141.
[42]
Le BD, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
[43]
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed, 2010, 23(7): 698-710.
[44]
Falangola MF, Jensen JH, Tabesh A, et al. Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer's disease. Magn Reson Imaging, 2013, 31(6): 840-846.
[45]
Jensen JH, Falangola MF, Hu C, et al. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR Biomed, 2011, 24(5): 452-457.
[46]
Raj A, Hess C, Mukherjee P. Spatial HARDI: improved visualization of complex white matter architecture with Bayesian spatial regularization. Neuroimage, 2011, 54(1): 396-409.

PREV Imaging manifestation and misdiagnosis analysis of primary angiosarcoma of bone
NEXT Changes of local brain neural function activity in subjective tinnitus based on resting-state functional MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn