Share:
Share this content in WeChat
X
Review
Research progresses of MRI in white matter hyperintensity
GUO Hao-ming  LÜ Fa-jin 

DOI:10.12015/issn.1674-8034.2018.07.010.


[Abstract] White matter hyperintensity (WMH) is a common imaging manifestations of cerebral small vessel disease. The occurrence of WMH is mainly related with impaired dynamic cerebral autoregulation, collagen vascular diseases, blood-brain barrier dysfunction and genes, and the incidence of WMH is positively related to age. But the clinical information provided by WMH was still limited. However, a large number of new technologies have been applied to researches about WMH, when radiology represented by MRI made great progresses in recent years. In this paper, the latest clinical applications of revolutionary MRI technologies in WMH were primarily reviewed, and the limitations of current researches and relevant prospects were stated at last.
[Keywords] Leukoencephalopathies;Magnetic resonance imaging;Review

GUO Hao-ming Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

LÜ Fa-jin* Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

*Corresponding to: Lü FJ, E-mail: fajinlv@163.com

Conflicts of interest   None.

Received  2018-04-02
Accepted  2018-05-02
DOI: 10.12015/issn.1674-8034.2018.07.010
DOI:10.12015/issn.1674-8034.2018.07.010.

[1]
中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组.中国脑小血管病诊治共识.中华神经科杂志, 2015, 48(10): 838-844.
[2]
Smith EE, Schneider JA, Wardlaw JM, et al. Cerebral microinfarcts: the invisible lesions. Lancet Neurol, 2012, 11(3): 272-282.
[3]
Joutel A, Chabriat H. Pathogenesis of white matter changes in cerebral small vessel diseases: beyond vessel-intrinsic mechanisms. Clin Sci (Lond), 2017, 131(8): 635-651.
[4]
Sam K, Crawley AP, Conklin J, et al. Development of white matter hyperintensity is preceded by reduced cerebrovascular reactivity. Ann Neurol, 2016, 80(2): 277-285.
[5]
de Leeuw FE, de Groot JC, Achten E, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry, 2001, 70(1): 9-14.
[6]
Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ, 2010, 341: c3666.
[7]
Kalheim LF, Bjørnerud A, Fladby T, et al. White matter hyperintensity microstructure in amyloid dysmetabolism. J Cereb Blood Flow Metab, 2017, 37(1): 356-365.
[8]
Jokinen H, Schmidt R, Ropele S, et al. Diffusion changes predict cognitive and functional outcome: the LADIS study. Ann Neurol, 2013, 73(5): 576-583.
[9]
Murray ME, Vemuri P, Preboske GM, et al. A quantitative postmortem MRI design sensitive to white matter hyperintensity differences and their relationship with underlying pathology. J Neuropathol Exp Neurol, 2012, 71(12): 1113-1122.
[10]
Valdés Hernández MC, Piper RJ, Bastin ME, et al. Morphologic, distributional, volumetric, and intensity characterization of periventricular hyperintensities. AJNR Am J Neuroradiol, 2014, 35(1): 55-62.
[11]
Le BD, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging, 2001, 13(4): 534-546.
[12]
Maillard P, Fletcher E, Harvey D, et al. White matter hyperintensity penumbra. Stroke, 2011, 42(7): 1917-1922.
[13]
Maillard P, Fletcher E, Lockhart SN, et al. White matter hyperintensities and their penumbra lie along a continuum of injury in the aging brain. Stroke, 2014, 45(6): 1721-1726.
[14]
党玉雪,王晓明.磁共振新技术DKI和IVIM在中枢神经系统的研究现状.磁共振成像, 2015, 6(2): 145-150.
[15]
Serulle Y, Pawar RV, Eubig J, et al. Diffusional kurtosis imaging in hydrocephalus. Magn Reson Imaging, 2015, 33(5): 531-536.
[16]
叶德湫,陈向荣,黄永础,等.缺血性脑白质病额顶叶白质的扩散峰度表现.中国医学影像学杂志, 2016, 24(7): 481-485.
[17]
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
[18]
Federau C, Maeder P, O'Brien K, et al. Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology, 2012, 265(3): 874-881.
[19]
Sun J, Yu X, Jiaerken Y, et al. The relationship between microvasculature in white matter hyperintensities and cognitive function. Brain Imaging Behav, 2017, 11(2): 503-511.
[20]
Wu WC, Chen YF, Tseng HM, et al. Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain. Eur Radiol, 2015, 25(8): 2485-2492.
[21]
Ryu WS, Woo SH, Schellingerhout D, et al. Stroke outcomes are worse with larger leukoaraiosis volumes. Brain, 2017, 140(1): 158-170.
[22]
Bokkers RP, Bremmer JP, van Berckel BN, et al. Arterial spin labeling perfusion MRI at multiple delay times: a correlative study with H(2)(15)O positron emission tomography in patients with symptomatic carotid artery occlusion. J Cereb Blood Flow Metab, 2010, 30(1): 222-229.
[23]
胡英,陈莉,肖艳,等.正常人3d-asl脑血流灌注最佳标记后延迟时间分析.中国医学影像技术, 2016, 32(9): 1330-1335.
[24]
Bastos-Leite AJ, Kuijer JP, Rombouts SA, et al. Cerebral blood flow by using pulsed arterial spin-labeling in elderly subjects with white matter hyperintensities. AJNR Am J Neuroradiol, 2008, 29(7): 1296-1301.
[25]
Brickman AM, Zahra A, Muraskin J, et al. Reduction in cerebral blood flow in areas appearing as white matter hyperintensities on magnetic resonance imaging. Psychiatry Res, 2009, 172(2): 117-120.
[26]
Benedictus MR, Binnewijzend MAA, Kuijer JPA, et al. Brain volume and white matter hyperintensities as determinants of cerebral blood flow in Alzheimer's disease. Neurobiol Aging, 2014, 35(12): 2665-2670.
[27]
Bahrani AA, Powell DK, Yu G, et al. White Matter Hyperintensity associations with cerebral blood flow in elderly subjects stratified by cerebrovascular risk. J Stroke Cerebrovasc Dis, 2017, 26(4): 779-786.
[28]
van Dalen JW, Mutsaerts HJ, Nederveen AJ, et al. White matter hyperintensity volume and cerebral perfusion in older individuals with hypertension using arterial spin-labeling. AJNR Am J Neuroradiol, 2016, 37(10): 1824-1830.
[29]
Promjunyakul N, Lahna D, Kaye JA, et al. Characterizing the white matter hyperintensity penumbra with cerebral blood flow measures. Neuroimage Clin, 2015, 8: 224-229.
[30]
Promjunyakul NO, Lahna DL, Kaye JA, et al. Comparison of cerebral blood flow and structural penumbras in relation to white matter hyperintensities: A multi-modal magnetic resonance imaging study. J Cereb Blood Flow Metab, 2016, 36(9): 1528-1536.
[31]
Shen Y, Zhao B, Yan L, et al. Cerebral hemodynamic and white matter changes of type 2 diabetes revealed by multi-TI arterial spin labeling and double inversion recovery sequence. Front Neurol, 2017, 8: 717.
[32]
Wong SM, Jansen JFA, Zhang CE, et al. Measuring subtle leakage of the blood-brain barrier in cerebrovascular disease with DCE-MRI: Test-retest reproducibility and its influencing factors. J Magn Reson Imaging, 2017, 46(1): 159-166.
[33]
Nasel C, Boubela R, Kalcher K, et al. Normalised time-to-peak-distribution curves correlate with cerebral white matter hyperintensities - could this improve early diagnosis. J Cereb Blood Flow Metab, 2017, 37(2): 444-455.
[34]
李曼,李悦,高帅,等.缺血性脑白质病变DCE-MRI药代动力学模型选择.放射学实践, 2017, 32(11): 1122-1125.
[35]
Li Y, Li M, Zhang X, et al. Higher blood-brain barrier permeability is associated with higher white matter hyperintensities burden. J Neurol, 2017, 264(7): 1474-1481.
[36]
钟毅欣,赵建农,周治明,等.脑白质疏松症患者静息态功能磁共振成像的初步研究.磁共振成像, 2015, 6(6): 411-415.
[37]
李正然,沈慧聪,林梅影,等.脑静息态功能磁共振局部一致性分析在老年人脑白质病变相关性跌倒中的初步研究.磁共振成像, 2018, 9(1): 9-13.
[38]
Rane S, Koh N, Boord P, et al. Quantitative cerebrovascular pathology in a community-based cohort of older adults. Neurobiol Aging, 2018, 65: 77-85.
[39]
张慧丽,李仕红,张颖冬,等.磁共振弥散张量和波谱成像在缺血性脑小血管疾病中的应用研究.磁共振成像, 2017,8(06):418-423.
[40]
Erdélyi-Bótor S, Aradi M, Kamson DO, et al. Changes of migraine-related white matter hyperintensities after 3 years: a longitudinal MRI study. Headache, 2015, 55(1): 55-70.
[41]
Wong TY, Bressler NM. Artificial Intelligence With Deep Learning Technology Looks Into Diabetic Retinopathy Screening. JAMA, 2016,316(22): 2366-2367.
[42]
Ghafoorian M, Karssemeijer N, Heskes T, et al. Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities. Sci Rep, 2017, 7(1): 5110.
[43]
Moeskops P, de Bresser J, Kuijf HJ, et al. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI. Neuroimage Clin, 2018, 17: 251-262.

PREV Implement of radiomics flow based on the YAP pipeline
NEXT The role of metal ions in AD pathogenesis and its imaging evaluation
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn