Share:
Share this content in WeChat
X
Review
Application of different diffusion models in the diagnosis of endometrial cancer
YIN Xi  WU Hui  GAO Yang  NIU Guang-ming 

DOI:10.12015/issn.1674-8034.2018.07.013.


[Abstract] Endometrial cancer is a common malignant tumor in postmenopausal women. The differential diagnosis, preoperative staging, pathological classification and pathological grading are the keys to treatment and prognosis. Conventional MRI is mainly confined to morphological imaging. Different diffusion models include diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), intracorporeal incoherent motion imaging (IVIM), be able to provide more clinical information through a series of quantitative and semi-quantitative data analysis. Combined with domestic and foreign literature, this article reviews the application of these four diffusion models in the diagnosis of endometrial cancer.
[Keywords] Endometrial neoplasms;Carcinoma;Magnetic resonance imaging;Neoplasm grading;Neoplasm staging

YIN Xi Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010000, China

WU Hui Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010000, China

GAO Yang Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010000, China

NIU Guang-ming* Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010000, China

*Corresponding to: Niu GM, E-mail: Cjr.niuguangming@vip.163.com

Conflicts of interest   None.

Received  2018-02-26
Accepted  2018-03-18
DOI: 10.12015/issn.1674-8034.2018.07.013
DOI:10.12015/issn.1674-8034.2018.07.013.

[1]
DeSantis CE, Siegel RL, Sauer AG, et al. Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin, 2016, 66(4): 290-308.
[2]
Padhani AR, Liu GY, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia, 2009, 11(2): 102-125.
[3]
Koyama T, Togashi K. Functional MR imaging of the female pelvis. J Magn Reson Imaging, 2007, 25(6): 1101-1112.
[4]
Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol, 2007, 188(6): 1622-1635.
[5]
毕秋,肖智博,吕发金,等.不同表观扩散系数在评价子宫内膜良恶性病变中的价值.临床放射学杂志, 2017, 36(4): 540-544.
[6]
Kilickesmez O, Bayramoglu S, Inci E, et al. Quantitative diffusion-weighted magnetic resonance imaging of normal and diseased uterine zones. Acta Radiol, 2009, 50(3): 340-347.
[7]
Takeuchi M, Matsuzaki K, Nishitani H. Diffusion-weighted magnetic resonance imaging of endometrial cancer: differentiation from benign endometrial lesions and preoperative assessment of myometrial invasion. Acta Radiol, 2009, 50(8): 947-953.
[8]
Deng L, Wang QP, Chen X, et al. The Combination of diffusion- and T2-weighted imaging in predicting deep myometrial invasion of endometrial cancer: a systematic review and Meta-analysis. J Comput Assist Tomogr, 2015, 39(5): 661-673.
[9]
Heijnen LA, Lambregts DM, Mondal D, et al. Diffusion-weighted MR imaging in primary rectal cancer staging demonstrates but does not characterise lymph nodes. Eur Radiol, 2013, 23(12): 3354-3360.
[10]
Cerny M, Dunet V, Prior JO, et al. Initial staging of locally advanced rectal cancer and regional lymph nodes: comparison of diffusion-weighted MRI with 18F-FDG-PET/CT. Clin Nucl Med, 2016, 41(4): 289-295.
[11]
Thoeny HC, Froehlich JM, Triantafyllou M, et al. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology, 2014, 273(1): 125-135.
[12]
Yan B, Zhao TT, Liang XF, et al. Can the apparent diffusion coefficient differentiate the grade of endometrioid adenocarcinoma and the histological subtype of endometrial cancer? Acta Radiol, 2018, 59(3): 363-370.
[13]
Nougaret S, Reinhold C, Alsharif SS, et al. Endometrial cancer: combined MR Volumetry and diffusion-weighted imaging for assessment of myometrial and lymphovascular invasion and tumor grade. Radiology, 2015, 276(3): 797-808.
[14]
Bharwani N, Miquel ME, Sahdev A, et al. Diffusion-weighted imaging in the assessment of tumour grade in endometrial cancer. Br J Radiol, 2011, 84(1007): 997-1004.
[15]
Kishimoto K, Tajima S, Maeda I, et al. Endometrial cancer: correlation of apparent diffusion coefficient (ADC) with tumor cellularity and tumor grade. Acta Radiol, 2016, 57(8): 1021-1028.
[16]
Husby JA, Salvesen ØO, Magnussen IJ, et al. Tumour apparent diffusion coefficient is associated with depth of myometrial invasion and is negatively correlated to tumour volume in endometrial carcinomas. Clin Radiol, 2015, 70(5): 487-494.
[17]
Tian S, Liu A, Zhu W, et al. Difference in diffusion-weighted magnetic resonance imaging and diffusion tensor imaging parameters between endometrioid endometrial adenocarcinoma and uterine serous adenocarcinoma: a retrospective study. Inter J Gynecol Cancer, 2017, 27(8): 1708-1713.
[18]
Fiocchi F, Nocetti L, Siopis E, et al. In vivo 3 T MR diffusion tensor imaging for detection of the fibre architecture of the human uterus: a feasibility and quantitative study. Br J Radiol, 2012, 85(1019): e1009-1017.
[19]
Toba M, Miyasaka N, Sakurai U, et al. Diagnostic possibility of diffusion tensor imaging for the evaluation of myometrial invasion in endometrial cancer: an ex vivo study. J Magn Reson Imaging, 2011, 34(3): 616-622.
[20]
Zhang LM, Liu AL, Zhang T, et al. Use of diffusion tensor imaging in assessing superficial myometrial invasion by endometrial carcinoma: a preliminary study. Acta Radiol, 2015, 56(10): 1273-1280.
[21]
Prueksaritanond N, Chantape W. Comparative survival outcomes of uterine papillary serous carcinoma, clear cell carcinoma, grade 3 endometrioid adenocarcinoma, and carcinosarcoma of endometrial cancer in rajavithi hospital. J Med Assoc Thai, 2016, 99(Suppl 2): S75-S83.
[22]
de Carvalho Rangel C, Hygino Cruz LC Jr, Takayassu TC, et al. Diffusion MR imaging in central nervous system. Magn Reson Imaging Clin N Am, 2011, 19(1): 23-53.
[23]
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed, 2010, 23(7):698-710.
[24]
Wang Q, Li H, Yan X, et al. Histogram analysis of diffusion kurtosis magnetic resonance imaging in differentiation of pathologic Gleason grade of prostate cancer. Urol Oncol, 2015, 33(8): 337.
[25]
徐蒙莱,邢春华,陈宏伟,等. DKI技术在肝外胆管癌分级中的应用价值.磁共振成像, 2016, 7(1): 34-39.
[26]
Fukukura Y, Kumagae Y, Nakajo M, et al. Feasibility of diffusion kurtosis imaging as a tool for differentiation between benign and malignant uterine lesions. Hawaii: ISMRM, 2017: 3423.
[27]
Chen T, Li Y, Lu SS, et al. Quantitative evaluation of diffusion-kurtosis imaging for grading endometrial carcinoma: a comparative study with diffusion-weighted imaging..Clin Radiol, 2017, 72(11): 995.
[28]
Suh CH, Kim HS, Lee SS, et al. Atypical imaging features of primary central nervous system lymphoma that mimics glioblastoma: utility of intravoxel incoherent motion MR imaging. Radiology, 2014, 272(2): 504-513.
[29]
Woo S, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade. Radiology, 2014, 270(3): 758-767.
[30]
Joo I, Lee JM, Yoon JH, et al. Nonalcoholic fatty liver disease: intravoxel incoherent motion diffusion-weighted MR imaging-an experimental study in a rabbit model. Radiology, 2014, 270(1): 131-140.
[31]
Kang KM, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology, 2014, 270(2): 444-453.
[32]
Bihan DL, Breton E, Lallemand D, et al. MR Imaging of incoherent motion: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
[33]
Le BD. Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology, 2008, 249(3): 748-752.
[34]
Shinmoto H, Tamura C, Soga S, et al. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol, 2012, 199(4): W496-500.
[35]
孟楠,闫瑞芳,任继鹏,等.单指数、双指数及拉伸指数模型扩散加权成像参数诊断子宫内膜癌.中国医学影像学杂志, 2017, 25(8): 609-612.
[36]
Liu JY, Wan YD, Wang Z, et al. Perfusion and diffusion characteristics of endometrial malignancy based on intravoxel incoherent motion MRI at 3.0 T: comparison with normal endometrium. Acta Radiol, 2016, 57(9): 1140-1148.
[37]
Rechichi G. Myometrial invasion in endometrial cancer: diagnostic performance of diffusion-weighted MR imaging at 1.5 T. Eur Radiol, 2010, 20(3): 754-762.
[38]
Kuang F, Chen Z, Zhong Q, et al. Apparent diffusion coefficients of normal uterus in premenopausal women with 3 T MRI. J Comput Assist Tomogr, 2011, 36(1): 455-460.

PREV Advances of MRI new technology in clinical application for rectal cancer
NEXT Functional connectivity of persistent somatoform pain disorder in thalamus: A functional magnetic resonance imaging study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn