Share:
Share this content in WeChat
X
Review
Research progress of MRI in pain and periaqueductal grey
CHEN You  HE Lai-chang  TAN Yong-ming 

DOI:10.12015/issn.1674-8034.2018.08.013.


[Abstract] The inhibition and promotion mechanism of pain can precisely adjust the excitability of the neural circuit involved in the overall pain experience, and the disorders of the pain in the circuit can lead to chronic pain. The periaqueductal gray (PAG) which involved in both ascending and descending pain modulation systems is an important node in the descending pain modulatory system (DPMS). This article summarizes the research progress of pain-related PAG magnetic resonance imaging.
[Keywords] Periaqueductal gray;Pain;Descending pain modulatory system;Magnetic resonance imaging

CHEN You Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

HE Lai-chang* Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

TAN Yong-ming Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

*Corresponding to: He LC, E-mail: laichang_he@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No.81460329 Project Supported by Natural Science Foundation of Jiangxi Province No.2013ZBAB205007
Received  2018-05-11
Accepted  2018-06-08
DOI: 10.12015/issn.1674-8034.2018.08.013
DOI:10.12015/issn.1674-8034.2018.08.013.

[1]
Millan MJ. Descending control of pain. Progress in Neurobiology, 2002, 66(6): 355-474.
[2]
Bandler R, Shipley MT. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression?. Trends in Neurosciences, 1994, 17(9): 379.
[3]
Dampney RA, Furlong TM, Horiuchi J, et al. Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Auton Neurosci, 2013, 175(1-2): 17-25.
[4]
Subramanian HH, Balnave RJ, Holstege G. The midbrain periaqueductal gray control of respiration. J Neurosci, 2008, 28(47): 12274-12283.
[5]
Heinricher MM, Tavares I, Leith JL, et al. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev, 2009, 60(1): 214-225.
[6]
Fields H. State-dependent opioid control of pain. Nature Reviews Neuroscience, 2004, 5(7): 565.
[7]
Benarroch EE. Periaqueductal gray: an interface for behavioral control. Neurology, 2012, 78(3): 210.
[8]
An X, Bandler R, Ongür D, et al. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in Macaque monkeys. J Comp Neurol, 2015, 401(4): 455-479.
[9]
Herbert H, Saper CB. Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol, 1992, 315(1): 34.
[10]
Keay KA, Bandler R. Distinct central representations of inescapable and escapable pain: observations and speculation. Exp Physiol, 2002, 87(2): 275-279.
[11]
Lumb BM. Hypothalamic and midbrain circuitry that distinguishes between escapable and inescapable pain. News Physiol Sci, 2004, 19(1): 22.
[12]
Gee JR, Chang J, Dublin AB, et al. The association of brainstem lesions with migraine-like headache: an imaging study of multiple sclerosis. Headache, 2005, 45(6): 670.
[13]
David CHMD, Paul F, Kent MD, et al. Headache caused by a single lesion of multiple sclerosis in the periaqueductal gray area. Headache, 1993, 33(8): 452.
[14]
Lin GY, Wang CW, Chiang TT, et al. Multiple sclerosis presenting initially with a worsening of migraine symptoms. J Headache Pain, 2013, 14(1): 1-6.
[15]
Tortorella P, Rocca MA, Colombo B, et al. Assessment of MRI abnormalities of the brainstem from patients with migraine and multiple sclerosis. J Neurol Sci, 2006, 244(1-2): 137.
[16]
Fragoso YD, Brooks JB. Two cases of lesions in brainstem in multiple sclerosis and refractory migraine. Headache, 2007, 47(6): 852-854.
[17]
Wang Y, Wang XS. Migraine-like headache from an infarction in the periaqueductal gray area of the midbrain. Pain Med, 2013, 14(6): 948-949.
[18]
Pereira EA, Lu G, Wang S, et al. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp Neurol, 2010, 223(2): 574-581.
[19]
Ito K, Kudo M, Sasaki M, et al. Detection of changes in the periaqueductal gray matter of patients with episodic migraine using quantitative diffusion kurtosis imaging: preliminary findings. Neuroradiol, 2016, 58(2): 115.
[20]
Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nature Med, 1995, 1(7): 658-660.
[21]
Welch KM. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness?. Headache, 2001, 41(7): 629-637.
[22]
Dasilva AF, Granziera C, Tuch DS, et al. Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. Neuroreport, 2007, 18(4): 301-305.
[23]
Neeb L, Bastian K, Villringer K, et al. No microstructural white matter alterations in chronic and episodic migraineurs: A case-control diffusion tensor magnetic resonance imaging study. Headache, 2015, 55(2): 241-251.
[24]
Chen Z, Chen X, Liu M, et al. Volume expansion of periaqueductal gray in episodic migraine: a pilot MRI structural imaging study. J Headache Pain, 2017, 18(1): 83.
[25]
Chen Z, Chen X, Liu M, et al. Volume gain of periaqueductal gray in medication-overuse headache. J Headache Pain, 2017, 18(1): 12.
[26]
Harper DE, Ichesco E, Schrepf A, et al. Resting functional connectivity of the periaqueductal gray is associated with normal inhibition and pathological facilitation in conditioned pain modulation. J Pain, 2018, 19(6): 635.
[27]
Rocca MA, Ceccarelli A, Falini A, et al. Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke, 2006, 37(7): 1765-1770.
[28]
Herlidou-Même S, Constans JM, Carsin B, et al. MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn Reson Imaging, 2003, 21(9): 989-993.
[29]
Nachimuthu DS, Baladhandapani A. Multidimensional texture characterization: On analysis for brain tumor tissues using MRS and MRI. J Digit Imaging, 2014, 27(4): 496-506.
[30]
Mahmoudghoneim D, Toussaint G, Constans JM, et al. Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn Reson Imaging, 2003, 21(9): 983-987.
[31]
Oliveira MSD, Betting LE, Mory SB, et al. Texture analysis of magnetic resonance images of patients with juvenile myoclonic epilepsy. Epilepsy Behav, 2013, 27(1): 22-28.
[32]
Caselato GR, Kobayashi E, Bonilha L, et al. Hippocampal texture analysis in patients with familial mesial temporal lobe epilepsy. Arq Neuropsiquiatr, 2003, 61 3(Suppl 1): 83-87.
[33]
de Oliveira MS, Balthazar ML, D'Abreu A, et al. MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease. AJNR Am J Neuroradiol, 2011, 32(1): 60-66.
[34]
Raskin NH, Hosobuchi Y, Lamb S. Headache may arise from perturbation of brain. Headache, 1987, 27(8): 416.
[35]
Lee KS, Huang YH, Yen CT. Periaqueductal gray stimulation suppresses spontaneous pain behavior in rats. Neurosci Lett, 2012, 514(1): 42-45.
[36]
Cruccu G, Aziz TZ, Garcia-Larrea L, et al. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol, 2007, 14(9): 952-970.
[37]
Green AL, Hyam JA, Williams C, et al. Intra-operative deep brain stimulation of the periaqueductal grey matter modulates blood pressure and heart rate variability in humans. Neuromodulation, 2010, 13(3): 174-181.
[38]
Freund W, Wunderlich AP, Stuber G, et al. The role of periaqueductal gray and cingulate cortex during suppression of pain in complex regional pain syndrome. Clin J Pain, 2011, 27(9): 796.
[39]
Cesa SL, Tinelli E, Toschi N, et al. fMRI pain activation in the periaqueductal gray in healthy volunteers during the cold pressor test. Magn Reson Imaging, 2014, 32(3): 236-240.
[40]
Wu D, Wang S, Stein JF, et al. Reciprocal interactions between the human thalamus and periaqueductal gray may be important for pain perception. Exp Brain Res, 2014, 232(2): 527-534.
[41]
Buhle JT, Kober H, Ochsner KN, et al. Common representation of pain and negative emotion in the midbrain periaqueductal gray. Soc Cogn Affect Neurosci, 2013, 8(6): 609-616.
[42]
Blakemore RL, Rieger SW, Vuilleumier P. Negative emotions facilitate isometric force through activation of prefrontal cortex and periaqueductal gray. Neuroimage, 2016, 124(Pt A): 627-640.
[43]
Faull OK, Mark J, Stuart C, et al. Functional subdivision of the human periaqueductal grey in respiratory control using 7 tesla fMRI. Neuroimage, 2015, 113: 356-364.
[44]
Faull OK, Pattinson KT. The cortical connectivity of the periaqueductal gray and the conditioned response to the threat of breathlessness. Elife, 2017 DOI: 10.7554/eLife.21749.
[45]
Wang H, Wessendorf MW. Mu- and delta-opioid receptor mRNAs are expressed in periaqueductal gray neurons projecting to the rostral ventromedial medulla. Neuroscience, 2002, 109(3): 619-634.
[46]
Simswilliams H, Matthews JC, Talbot PS, et al. Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans. Neuroimage, 2016, 146(1): 833-842.
[47]
梁瑞华,张素平,何锐.不同亚型偏头痛患者PAG区的磁共振波谱研究.中国医药指南, 2014, 12(19): 31-32.
[48]
Coulombe MA, Erpelding N, Kucyi A, et al. Intrinsic functional connectivity of periaqueductal gray subregions in humans. Human Brain Mapping, 2016, 37(4): 1514-1530.
[49]
Zyloney CE, Jensen K, Polich G, et al. Imaging the functional connectivity of the periaqueductal gray during genuine and sham electroacupuncture treatment. Molecular Pain, 2010, 6(1): 80.
[50]
Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Annals of Neurology, 2011, 70(5): 838-845.
[51]
Li ZJ, Liu ML, Lan L, et al. Altered periaqueductal gray resting state functional connectivity in migraine and the modulation effect of treatment. Sci Rep, 2016, 6: 20298.
[52]
Chen Z, Chen X, Liu M, et al. Disrupted functional connectivity of periaqueductal gray subregions in episodic migraine. J Headache Pain, 2017, 18(1): 36.
[53]
Williams FG, Mullet MA, Beitz AJ. Basal release of met-enkephalin and neurotensin in the ventrolateral periqueductal gray matter of the rat: A microdialysis study of antinociceptive circuits. Brain Research, 1995, 690(2): 207.
[54]
Yu R, Gollub RL, Spaeth R, et al. Disrupted functional connectivity of the periaqueductal gray in chronic low back pain. Neuroimage Clin, 2014, 6: 100-108.
[55]
Jensen KB, Loitoile R, Kosek E, et al. Patients with fibromyalgia display less functional connectivity in the brain's pain inhibitory network. Molecular Pain, 2012, 8(1): 1-9.
[56]
Segerdahl AR, Themistocleous AC, Fido D, et al. A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy. Brain, 2018, 141(2): 357-364.
[57]
Liu P, Wang G, Liu Y, et al. Disrupted intrinsic connectivity of the periaqueductal gray in patients with functional dyspepsia: A resting-state fMRI study. Neurogastroenterol Motil, 2017, 29(8): 13060.

PREV Myofibroblastic tumor in child head: One case report
NEXT Advances in intracranial aneurysms by high resolution magnetic resonance vessel wall imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn