Share:
Share this content in WeChat
X
Clinical Article
ReHo and ALFF studies in the brain of patients with obstructive sleep apnea hypopnea syndrome
QIN Zong-yuan  BAO Hai-hua  KANG Dong-jie  FENG Xiang  HE Ying 

DOI:10.12015/issn.1674-8034.2018.09.002.


[Abstract] Objective: To investigate the change of brain function in patients with obstructive sleep apnea hypopnea syndrome using regional homogeneity (ReHo) and amplitude of low frequency fluctuation (ALFF).Materials and Methods: Thirty-one patients of OSAHS were recruited from the Affiliated Hospita of Qinghai University and 32 healthy volunteers were recruited. Polysomnography (PSG) and resting state functional magnetic resonance imaging (rs-fMRI) were performed on OSAHS patients and healthy controls.The blood oxygen level dependent (BOLD) signals of OSAHS patients and normal controls were obtained and compared using ReHo and ALFF methods.Results: Compared with the normal group, the OSAHS group has significant differences between ReHo and ALFF. The brain areas with increased ReHo value (P <0.05) are: right medial and paracentral cingulate gyrus, right dorsolateral upper frontal gyrus, left dorsolateral upper frontal gyrus, right middle frontal gyrus, right medial upper frontal gyrus, left medial upper frontal gyrus, right hippocampus. The brain areas with decreased ReHo value (P<0.05) are: right lingual gyrus, left middle temporal gyrus, left postcentral gyrus, right inferior temporal gyrus, left precuneus, right middle temporal gyrus, right precuneus, right superior occipital gyrus. The brain areas with increased ALFF value (P<0.05) are: right dorsolateral upper frontal gyrus, right hippocampus, right insula, right parahippocampal, left hippocampus, right medial and paracentral cingulate gyrus, right middle frontal gyrus. The brain areas with decreased ALFF value (P<0.05) are: right middle occipital gyrus, right inferior occipital gyrus, left middle occipital gyrus, right lingual, left lingual, left inferior occipital gyrus, left middle temporal gyrus, right superior occipital gyrus.Conclusions: The changes in ReHo and ALFF values in multiple brain regions indicate that OSAHS has a certain degree of influence on the brain function of the multiple brain regions of the patient.
[Keywords] Sleep apnea syndromes;Brain injuries;Magnetic resonance imaging

QIN Zong-yuan Medical Imaging Center, the Affiliated Hospital of Qinghai University, Xi'ning 810001, China

BAO Hai-hua* Medical Imaging Center, the Affiliated Hospital of Qinghai University, Xi'ning 810001, China

KANG Dong-jie Medical Imaging Center, the Affiliated Hospital of Qinghai University, Xi'ning 810001, China

FENG Xiang Medical Imaging Center, the Affiliated Hospital of Qinghai University, Xi'ning 810001, China

HE Ying Medical Imaging Center, the Affiliated Hospital of Qinghai University, Xi'ning 810001, China

*Correspondence to: Bao HH, E-mail: baohelen2@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  Science and Technology Program Project of Qinghai Provincial Science and Technology Department No.2017-SF-158
Received  2018-04-16
Accepted  2018-07-20
DOI: 10.12015/issn.1674-8034.2018.09.002
DOI:10.12015/issn.1674-8034.2018.09.002.

[1]
Kepez A, Niksarlioglu EY, Hazirolan T, et al. Early myocardial functional alterations in patients with obstructive sleep apnea syndrome. Echocardiography, 2009, 26(4): 388-396.
[2]
Aslan K, Deniz A, Cayli M, et al. Early left ventricular functional alterations in patients with obstructive sleep apnea syndrome. Cardiol J, 2013, 20(5): 519-525.
[3]
Verstraeten E. Neurocognitive effects of obstructive sleep apnea syndrome. Current Neurol Neurosci Rep, 2007, 7(2): 161-166.
[4]
Bennett LS, Barbour C, Langford B, et al. Health status in obstructive sleep apnea relationship with sleep fragmentation and daytine sleepiness, and effects of continuous positive airway pressure treatment. Am J Respir Crit Care Med, 1999, 159(6): 1884-1890.
[5]
中华医学会呼吸病学分会睡眠呼吸障碍学组.阻塞性睡眠呼吸暂停低通气综合征诊治指南(2011年修订版).柳州医学, 2012, 25(3): 162-165.
[6]
Zeng H, Pizarro R, Nair VA, et al. Alterations in regional homogeneity of resting-state brain activity in mesial temporal lobe epilepsy. Epilepsia, 2013, 54(4): 658-666.
[7]
孙骁俊,袁建华,丁忠祥,等.脑肿瘤患者认知异常的静息态脑功能成像研究.浙江医学, 2018, 40(8): 809-812.
[8]
Santarnecchi E, Sicilia I, Richiardi J, et al. Altered cortical and subcortical local coherence in obstructive sleep apnea: a functional magnetic resonance imaging study. J Sleep Res, 2013, 22(3): 337-347.
[9]
Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A, 2001, 98(2): 676-682.
[10]
Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A, 2005, 102(27): 9673-9678.
[11]
Thomas RJ, Rosen BR, Stern CE, et al. Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol, 2005, 98(6): 2226-2234.
[12]
Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci, 2000, 12(1): 1-47.
[13]
Melzer TR, Watts R, MacAskill MR, et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease. Brain, 2011, 134(3): 845-855.
[14]
Li HJ, Dai XJ, Gong HH, et al. Aberrant spontaneous low-frequency brain activity in male patients with severe obstructive sleep apnea revealed by resting-state functional MRI. Neuropsychiatr Dis Treat, 2015, 11: 207-214.
[15]
Li ZH, Sun XW, Wang ZX, et al. Behavioral and functional MRI study of attention shift in human verbal working memory. Neuroimage, 2004, 21(1): 181-191.
[16]
Caeyenberghs K, Leemans A, Heitger MH, et al. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain, 2012, 135(4): 1293-1307.
[17]
Etkin A. Neurobiology of anxiety: from neural circuits to novel solutions? Depress Anxiety, 2012, 29(5): 355-358.
[18]
Lutherer LO, Williams JL. Stimulating fastigial nucleus pressor region elicits patterned respiratory responses. Am J Physiol, 1986, 250(2): 418-426.
[19]
Harper RM, Poe GR, Rector DM, et al. Relationships between hippocampal activity and breathing patterns. Neurosci Biobehav Rev, 1998, 22(2): 233-236.
[20]
Xu F, Frazier DT. Respiratory-related neurons of the fastigial nucleus in response to chemical and mechanical challenges. J Appl Physiol, 1997, 82(4): 1177-1184.
[21]
Macey PM, Kumar R, Woo MA, et al. Brain structural changes in obstructive sleep apnea. sleep, 2008, 31(7): 967-977.
[22]
Torelli F, Moscufo N, Garreffa G, et al. Cognitive profile and brain morphological changes in obstructive sleep apnea. Neuroimage, 2011, 54(2): 787-793.
[23]
Gale SD, Hopkins RO. Effects of hypoxia on the brain: neuroimaging and neuropsychological findings following carbon monoxide poisoning and obstructive sleep apnea. J Int Neuropsychol Soc, 2004, 10(1): 60-71.
[24]
杨丽玲.阻塞型睡眠呼吸暂停低通气综合征患者认知功能下降特点的分析.山东:山东大学, 2016: 28-56.
[25]
Tsang CS, Chong SL, Ho CK, et al. Moderate to severe obstructive sleep apnoea patients is associated with a higher incidence of visual field defect. Eye, 2006, 20(1): 38-42.
[26]
Li H, Li L, Shao Y. Abnormal intrinsic functional hubs in severe male obstructive sleep apnea: evidence from a voxel-wise degree centrality analysis. Plos One, 2016, 11(10): 1-18.
[27]
穆新暖,王滨,王晓芝,等.呼吸睡眠暂停低通气患者脑功能的功能性MRI诊断.放射学实践, 2017, 32(1): 16-20.
[28]
张泉.阻塞性睡眠呼吸暂停低通气综合征的静息态脑功能磁共振成像研究.天津:天津医科大学, 2012: 35-68.
[29]
Derdeyn CP, Videen TO, Yundt KD, et a1. Variability of cerebral blood volume and oxygen extraction: stage of cerebral hemodynamic impairment revisited. Brain, 2002, 125(2): 595-607.
[30]
李超伟,鲍海华,孔德民,等.基于体素形态学测量技术对高原地区正常成人脑结构的研究.磁共振成像, 2016(1): 1-5.
[31]
何盈,鲍海华,王芳芳,等.低海拔正常成人移居高海拔地区2年后脑的适应性变化.山东医药, 2017, 57(38): 92-94.

PREV Diagnostic value of cerebrospinal fluid 1H-MRS for mitochondrial encephalopathy
NEXT The clinical application of reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) in pancreatic cancer and pancreatitis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn