Share:
Share this content in WeChat
X
Review
Research advances in evaluation of anterior cruciate ligament injuries and patellar femoral instability by MRI of different knee positions
JIN Xiao  YUAN Hui-shu 

DOI:10.12015/issn.1674-8034.2018.09.012.


[Abstract] Magnetic resonance imaging is widely used in imaging diagnosis of knee injuries. At present, most domestic hospitals adopt supine extended position in routine MRI knee scans. However, due to anatomical relationship and kinematic characteristics of knee in different flexion positions, the evaluation of knee injuries in extended knee may be inaccurate, especially in the judgment of anterior cruciate ligament injuries and patellar femoral instability. This article mainly reviews the research progress in evaluation of anterior cruciate ligament injuries and patellar femoral instability by MRI of different knee positions, and aims to explore the value of multi-angle scanning in improving the diagnostic accuracy of knee injuries.
[Keywords] Knee joint;Patellofemoral joint;Joint instability;Anterior cruciate ligament injuries;Magnetic resonance imaging

JIN Xiao Department of Radiology, Peking University Third Hospital, Beijing 100191, China

YUAN Hui-shu* Department of Radiology, Peking University Third Hospital, Beijing 100191, China

*Corresponding to: Yuan HS, E-mail: huishuy@bjmu.edu.cn

Conflicts of interest   None.

Received  2018-06-04
Accepted  2018-07-25
DOI: 10.12015/issn.1674-8034.2018.09.012
DOI:10.12015/issn.1674-8034.2018.09.012.

[1]
Ng AWH, Lee RKL, Ho EPY, et al. Anterior cruciate ligament bundle measurement by MRI. Skeletal Radiology, 2013, 42(11): 1549-1554.
[2]
Bicer EK, Lustig S, Servien E, et al. Current knowledge in the anatomy of the human anterior cruciate ligament. Knee Surgery Sports Traumatology Arthroscopy, 2010, 18(8): 1075-1084.
[3]
Jordan SS, Defrate LE, Nha KW, et al. The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am J Sports Med, 2007, 35(4): 547-554.
[4]
Muhle C, Ahn JM, Dieke C. Diagnosis of ACL and meniscal injuries: MR imaging of knee flexion versus extension compared to arthroscopy. Springerplus, 2013, 2(1): 213.
[5]
Nenezic D, Kocijancic I. The value of the sagittal-oblique MRI technique for injuries of the anterior cruciate ligament in the knee. Radiol Oncol, 2013, 47(1): 19-25.
[6]
Niitsu M, Ikeda K, Fukubayashi T, et al. Knee extension and flexion: MR delineation of normal and torn anterior cruciate ligaments. J Comput Assist Tomogr,1996, 20(2): 322-327.
[7]
Pereira ER, Ryu KN, Ahn JM, et al. Evaluation of the anterior cruciate ligament of the knee: comparison between partial flexion true sagittal and extension sagittal oblique positions during MR imaging. Clin Radiol, 1998, 53(8): 574-578.
[8]
陈旭高,胡缙鸽,叶国伟,等.膝关节弯曲位3T磁共振成像的临床分析.医学影像学杂志, 2014, 24(4): 585-587.
[9]
Guenoun D, Vaccaro J, Le Corroller T, et al. A dynamic study of the anterior cruciate ligament of the knee using an open MRI. Surg Radiol Anatomy, 2017, 39(3): 307-314.
[10]
Ji HA, Jeong SH, Kang HW. Risk factors of false-negative magnetic resonance imaging diagnosis for meniscal tear associated with anterior cruciate ligament tear. Arthroscopy, 2016, 32(6): 1147-1154.
[11]
Ahmed A, Razzaque MA, Kaleem M, et al. Diagnostic accuracy of magnetic resonance imaging in detecting anterior cruciate ligament injuries. Med J Indon, 2017, 26(3): 218.
[12]
Niitsu M, Endo H, Ikeda K, et al. MR imaging of the flexed knee: comparison to the extended knee in delineation of meniscal lesions. Eur Radiol, 2000, 10(11): 1824.
[13]
Taneja AK, Miranda FC, Demange MK, et al. Evaluation of posterior cruciate ligament and intercondylar notch in subjects with anterior cruciate ligament tear: a comparative flexed-knee 3D magnetic resonance imaging study. Arthroscopy, 2018, 34(2): 557-565.
[14]
Niitsu M, Ikeda K, Itai Y. Slightly flexed knee position within a standard knee coil: MR delineation of the anterior cruciate ligament. Eur Radiol, 1998, 8(1): 113-115.
[15]
Marquez-Lara A, Andersen J, Lenchik L, et al. Variability in patellofemoral alignment measurements on MRI: influence of knee position. AJR Am J Roentgenol, 2017, 208(5): 1097-1102.
[16]
张璇,姚杰,辛星,等.膝关节5个屈曲角度动态三维MR扫描在运动轨迹模拟中的应用.中国医学影像学杂志, 2016, 24(8): 620-622.
[17]
Neale P. Disorders of the patello-femoral joint. J Canad Chiropract Associ, 1981, 25(1): 33.
[18]
Tan SH, Ibrahim MM, Lee ZJ, et al. Patellar tracking should be taken into account when measuring radiographic parameters for recurrent patellar instability. Knee Surgery, Sports Traumatology, Arthroscopy, 2017. DOI:
[19]
王淑丽,蔡跃增,王林森,等.动态磁共振对髌股关节排列的定量评价.临床放射学杂志, 2008, 27(12): 1716-1721.
[20]
Coles LG, Gheduzzi S, Miles AW, et al. Kinematics of the Natural and Replaced Knee. London: Springer, 2015: 7-19.
[21]
Grelsamer RP, Weinstein CH. Applied biomechanics of the patella. Clin Orthop Relat Res, 2001, 389(389): 9-14.
[22]
Esfandiarpour F, Lebrun CM, Dhillon S, et al. In-vivo patellar tracking in individuals with patellofemoral pain and healthy individuals. J Orthop Res, 2018. DOI:
[23]
Becher C, Fleischer B, Rase M, et al. Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability. Knee Surg Sports Traumatol Arthrosc, 2015, 25(8): 2405-2413.
[24]
White BJ, Sherman OH. Patellofemoral instability. Bulletin Nyu Hospital Joint Dis, 2009, 67(1): 22.
[25]
刘核达,王飞,陈百成,等.动态MRI对髌股关节排列和运动轨迹的评价研究.河北医药, 2012, 34(5): 645-648.
[26]
朱瑾,李石玲,赵建,等.动态影像观察对髌股关节对合异常的应用价值.河北医科大学学报, 2010, 31(1): 90-91.
[27]
Laugharne E, Bali N, Purushothamdas S, et al. Variability of measurement of patellofemoral indices with knee flexion and quadriceps contraction: an MRI-based anatomical study. Knee Surg Relat Res, 2016, 28(4): 297-301.
[28]
Kujala UM, Osterman K, Kormano M, et al. Patellar motion analyzed by magnetic resonance imaging.. Acta Orthopaedica, 1989, 60(1): 13-16.
[29]
Balcarek P, Jung K, Frosch KH, et al. Value of the tibial tuberosity-trochlear groove distance in patellar instability in the young athlete. Am J Sports Med, 2011, 39(8): 1756-1761.
[30]
Dietrich TJ, Betz M, Pfirrmann CW, et al. End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc, 2014, 22(1): 214-218.
[31]
Piazza SJ, Cavanagh PR. Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J Biomechanics, 2000, 33(8): 1029-1034.
[32]
Figueroa D, Novoa F, Melean P, et al. Usefulness of magnetic resonance imaging in the evaluation of patellar malalignment. Rev Esp Cir Ortop Traumatol, 2014, 58(1): 19-23.
[33]
Conlan T, Garth WP, Lemons JE. Evaluation of the medial soft-tissue restraints of the extensor mechanism of the knee. J Bone Joint Surg, 1993, 75(5): 682-693.
[34]
Senavongse W, Farahmand F, Jones J, et al. Quantitative measurement of patellofemoral joint stability: Force-displacement behavior of the human patella in vitro. J Orthopaedic Res, 2003, 21(5): 780-786.
[35]
Arai Y, Nakagawa S, Higuchi T, et al. Comparative analysis of medial patellofemoral ligament length change pattern in patients with patellar dislocation using open-MRI. Knee Surg Sports Traumatol Arthrosc, 2015, 25(8): 2330-2336.

PREV The progress of liver fibrosis quantitative evaluation by MRI
NEXT Progress in imaging diagnosis of osteonecrosis of the femoral head after developmental dysplasia of the hip
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn