Share:
Share this content in WeChat
X
Review
The application of ReHo in ophthalmologic diseases
WU Wei  GAO Gui-ping  SHAO Yi 

DOI:10.12015/issn.1674-8034.2018.11.012.


[Abstract] With the development of imaging techniques, resting-state functional MRI (rs-fMRI) has been widely used in the diagnosis and treatment of ophthalmic diseases. In visual research, fMRI can directly locate the cortical function related to visual formation. Regional homogeneity (ReHo) is one of the research methods of rs-fMRI, which has been widely used to study local spontaneous synchronous signals in fMRI imaging. It provides a new way of understanding the relationship between the characteristics of ocular diseases and the changes of local brain functional areas. The application of ReHo in ophthalmic diseases is summarized as follows.
[Keywords] Regional homogeneity;Resting state functional magnetic resonance imaging;Eye diseases

WU Wei Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

GAO Gui-ping Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

SHAO Yi* Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

*Corresponding to: Shao Y, E-mail: freebee99@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  Foundation items: National Natural Science Foundation of China No. 81660158, 81160118, 81160148, 81460092, 81400372, 81400424 Jiangxi Province Voyage Project No. 2014022 Natural Science Key Project of Jiangxi Province No. 20161ACB21017 Youth Science Foundation of Jiangxi Province No. 20151BAB215016, 20161BAB215198 Key Research Development Foundation of Jiangxi Province No. 20151BBG70223 Key Education Department Foundation of Jiangxi Province No. GJJ160020 Education Department Foundation of Jiangxi Province No. GJJ160122 Health Development Planning Commission Science Foundation of Jiangxi Province No. 20164017, 20175115, 20175116
Received  2018-06-08
DOI: 10.12015/issn.1674-8034.2018.11.012
DOI:10.12015/issn.1674-8034.2018.11.012.

[1]
Zang Y, Jiang T, Lu Y, et. al. Regional homogeneity approach to fMRI data analysis. Neuroimage, 2004, 22(1): 394-400.
[2]
廖艳辉,唐劲松,王绪轶,等.氯胺酮依赖者脑功能活动的局部一致性改变-静息态功能磁共振成像研究.中国药物依赖性杂志, 2010, 19(5): 343-348.
[3]
VithanaE N, Khor CC, Qiao C, Jet al. Genome-wideassociation analysesidentify three new susceptibility locifor p-rimary angle closure glaucoma. NatGenet, 2012,44(10): 1142-1146.
[4]
Gupta N, Ang LC, Noel dTL, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol, 2006, 90(6): 674-678.
[5]
Chen W, Zhang L, Xu YG, et al. Primary angle-closure glaucomas disturb regional spontaneous brain activity in the visual pathway: an fMRI study. Neuropsychiatr Dis Treat, 2017, 25, 13: 1409-1417.
[6]
江菲,蔡凤琴,李海军,等.静息态功能磁共振成像评价原发性闭角型青光眼患者脑部局部一致性.中国医学影像技术, 2016, 32(6): 854-857.
[7]
Song Y, Mu K, Wang J, et al. Altered spontaneous brain activity in primary open angle glaucoma: a resting-state functional magnetic resonance imaging study. PLos One, 2014, 9(2): e89493.
[8]
Dai H, Morelli JN, Ai F, et al. Resting-state functional MRI: functional connectivity analysis of the visual cortex in primary open-angle glau-coma patients. Hum Brain Mapp, 2013, 34(10): 2455-2463.
[9]
戴慧.原发性开角型青光眼的3 T MR功能磁共振研究.华中科技大学, 2011.
[10]
Qing G, Zhang S, Wang B, et al. Functional MRI signal changes in primary visual Cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci, 2010, 51(9): 4627-4634.
[11]
Duncan RO, Sample PA, Weinreb RN, et al. Retinotopic organization of primary visualcortex in glaucoma: a method for comparing cortical function with damage to the optic diskInvest Ophthalmol Vis Sci, 2007, 48(2): 733-744.
[12]
Jurcoane A, Choubey B, Muekli L, et al. A pilot study for investigating cortical binocularity in humans using adaptation. Strabismus, 2007, 15(1): 33-37.
[13]
Read JC. Stereo vision and strabismus. Eye (Lond), 2015, 29(2): 214-224.
[14]
Chen VJ, Tarczy-Hornoch K. Functional magnetic resonance imaging of binocular interactions in visual cortex in strabismus. J Pediatr Ophthalmol Strabismus, 2011, 48(6): 366.
[15]
Huang X, Li SH, Zhou FQ, et al. Altered intrinsic regional brain spontaneous activity in patients with comitant strabismus: a resting-state functional MRI study. Neuropsychiatr Dis Treat, 2016, 12(Issue 1): 1303-1308.
[16]
王小琴,谢青,鲁宏,等.共同性斜视患者大脑皮层激活强度的功能磁共振研究.眼科新进展. 2015, 35(3): 258-262.
[17]
Ouyang J, Yang L, Huang X, et al. The atrophy of white and gray matter volume in patientswith comitant strabismus: evidence from a voxel-based morphometry study. Mol Med Rep, 2017, 16(3): 3276-3282.
[18]
Freedman DJ, Riesenhuber M, Poggio T, et al. Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb Cortex, 2006, 16(11): 1631-1644.
[19]
Sigala N. Visual categorization and the inferior temporal cortex. Behav Brain Res, 2004, 149(1): 1-7.
[20]
Janssen P, Vogels R, Orban GA, et al. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. Proc Natl Acad Sci U S A, 1999, 96(14): 8217-8222.
[21]
Yan X, Lin X, Wang Q, et al. Dorsal visual pathway changes in patients with comitant extropia. PLos One, 2010, 5(6): e10931.
[22]
Wu GF, Brier MR, Parks CA, et al. An eye on brain integrity: acute optic neuritis affects resting state functional connectivity. Invest Ophthalmol Vis Sci, 2015, 56(4): 2541-2546.
[23]
Korsholm K, Madsen KH, Frederiksen JL, et al. Recovery from optic neuritis: an ROI-based analysis of LGN and visual cortical areas. Brain, 2007, 130(Pt 5): 1244-1253.
[24]
Jones SJ. Visual evoked potentials after optic neuritis. Effect of time interval, age and disease dissemination. J Neurol, 1993, 240(8): 489-494.
[25]
刘虎,赵堪兴,张大卫,等.急性视神经炎的功能磁共振成像研究.中国实用眼科杂志, 2006, 24(2): 155-158.
[26]
Shao Y, Cai FQ, Zhong YL, et al. Altered intrinsic regional spontaneous brain activity in patients with optic neuritis: a resting-state functional magnetic resonance imaging study. Neuropsychiatr Dis Treat, 2015, 11: 3065-3073.
[27]
Luppe S, Robertson NP. MOG-IgG in neuromyelitis optica. J Neurol, 2014, 261(3): 640-642.
[28]
Kima SH, Kwakb K, Hyuna JW, et al. Diffusion tensor imaging of normal-appearing white matter in patients with neuromyelitis optica spectrum disorder and multiple sclerosis. Eur J Neurol, 2017, 24(7): 966-973.
[29]
Wang J, Tian Y, Shao Y, et al. Comparison of spontaneous brain activity revealed by regional homogeneity in AQP4-IgG neuromyelitis optica-optic neuritis versus MOG-IgG optic neuritis patients: a resting-state functional MRI study. Neuropsychiatr Dis Treat, 2017, 24, 13: 2669-2679.
[30]
Biessels GJ, Strachan MW, Visseren FL, et al. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol, 2014, 2(3): 246-255.
[31]
Patton N, Aslam T, Macgillivray T, et al. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat J Anatomy, 2005, 206(4): 319-348.
[32]
Dai H, Zhang Y, Lai L, et al. Brain functional networks: correlation analysis with clinical indexes in patients with diabetic retinopathy. Neuroradiology, 2017, 59(11): 1121-1131.
[33]
王晓阳,林丹丹,刘学兵,等. 2型糖尿病患者视觉网络功能的独立成分分析.功能与分子医学影像学(电子版), 2016, 5(3): 14-18.
[34]
Lee HW, Hong SB, Seo DW, et al. Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology, 2000, 54(4): 849-854.
[35]
林钱森,陈自谦,肖慧,等.基于局部一致性方法的2型糖尿病静息态脑功能磁共振成像研究.功能与分子医学影像学(电子版), 2015, 4(2): 645-650.
[36]
Cui Y, Jiao Y, Chen YC, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study. Diabetes, 2014, 63(2): 749-760.
[37]
Wang ZL, Zou L, Lu ZW, et al. Abnormal spontaneous brain activity in type 2 diabetic retinopathy revealed by amplitude of low-frequency fluctuations: a resting-state fMRI study. Clin Radiol, 2017, 72(4): 340. e1-340. e7.
[38]
Peng J, Qu H, Luo TY, et al. Abonormal spontaneous brain activity in type 2 diabetes with andwithout microangiopathy revealed by regional homgeneity. Eur J Radiol, 2016, 85(3): 607-615.
[39]
Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 2006, 129(3): 564-583.
[40]
Li W, Qin W, Liu H, et al. Subregions of the human superior frontal gyrus and their connections. Neuroimage, 2013, 78(9): 46-58.
[41]
Huang X, Li HJ, Ye L, et al. Altered regional homogeneity in patients with unilateral acute open-globe injury: a resting-state functional MRI study. Neuropsychiatr Dis Treat, 2016, 12: 1901-1906.
[42]
Huang X, Li D, Li H, et al. Abnormal regional spontaneous neural activity in visual pathway in retinal detachment patients: a resting-state functional MRI study. Neuropsychiatr Dis Treat, 2017, 13: 2849-2854.
[43]
Tang LY, Li HJ, Huang X, et al. Assessment of synchronous neural activities revealed by regional homogeneity in individuals with acute eye pain: a resting-state functional magnetic resonance imaging study. J Pain Res, 2018, 11: 843-850.
[44]
Huang X, Ye CL, Zhong YL, et al. Altered regional homogeneity in patients with late monoculr blindness: a resting-state functional MRI study. Neuroreport, 2017, 28(16): 1085.

PREV Advances in imaging studies of gender differences in depression
NEXT Image evaluation of skeletal muscle fat quantification and its clinical value in type 2 diabetes mellitus
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn