Share:
Share this content in WeChat
X
Review
Advances in neuroimaging of adolescent idiopathic scoliosis
ZHAN Ya-ru  TAN Yong-ming  HE Lai-chang 

DOI:10.12015/issn.1674-8034.2018.11.014.


[Abstract] Adolescent idiopathic scoliosis (AIS) is one of the most common scoliosis, which severely affects the physical and mental health of adolescents.In recent years, some reports indicate that abnormal changes in the central nervous system may be the main pathogenesis of AIS. By magnetic resonance imaging, the brain and spinal cord structures and functions of AIS were found to be abnormal.
[Keywords] Scoliosis;Adolescent;Magnetic resonance imaging

ZHAN Ya-ru Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China

TAN Yong-ming Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China

HE Lai-chang* Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China

*Corresponding to: He LC, E-mail: laichang_he@163.com

Conflicts of interest   None.

Received  2018-04-19
DOI: 10.12015/issn.1674-8034.2018.11.014
DOI:10.12015/issn.1674-8034.2018.11.014.

[1]
Winiarski A, Zarzycki D, Koniarski A, et al. The natural history of idiopathic scoliosis. Ortop Traumatol Rehabil, 2005, 7(1): 1-7.
[2]
Cathleen LR. Sexual dimorphism in adolescent idiopathic scoliosis. Orthop Clin North Am, 2006, 37(4): 555-558.
[3]
Zapata KA, Wangprice SS, Sucato DJ, et al. Spinal stabilization exercise effectiveness for low back pain in adolescent idiopathic scoliosis: a randomized trial. Pediatr Phy Ther, 2015, 27(4): 396-402.
[4]
Ogilvie JW, Braun J, Argyle V, et al. The search for idiopathic scoliosis genes. Spine, 2006, 31(6): 679-681.
[5]
Moreau A, Wang DS, Forget S, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine, 2004, 29(16): 1772-1781.
[6]
Mirovsky Y, Blankstein A, Shlamkovitch N. Postural control in patients with severe idiopathic scoliosis: a prospective study. J Pediatr Orthop B, 2006, 15(3): 168-171.
[7]
Karski T. Biomechanical factors in the etiology of idiopathic scoliosis: two etiopathological groups of spinal deformities. Ortop Traumatol Rehabil, 2004, 6(6): 800-808.
[8]
Simoneau M, Lamothe V, Hutin É, et al. Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients. BMC Neurosci, 2009, 10(1): 1-7.
[9]
Cheng JC, Guo X, Sher AH. Posterior tibial nerve somatosensory cortical evoked potentials in adolescent idiopathic scoliosis. Spine, 1998, 23(3): 332-337.
[10]
Wiener-Vacher SR, Mazda K. Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J Pediatr, 1998, 132(6): 1028-1032.
[11]
Bruyneel AV, Chavet P, Bollini G, et al. Dynamical asymmetries in idiopathic scoliosis during forward and lateral initiation step. Eur Spine J, 2009, 18(2): 188-195.
[12]
Beaulieu M, Toulotte C, Gatto L, et al. Postural imbalance in non-treated adolescent idiopathic scoliosis at different periods of progression. Eur Spine, 2009, 18(1): 38-44.
[13]
Doménech J, Tormos JM, Barrios C, et al. Motor cortical hyperexcitability in idiopathic scoliosis: could focal dystonia be a subclinical etiological factor?Eur Spine J, 2010, 19(2): 223-230.
[14]
Rajasekaran S, Kamath V, Kiran R, et al. Intraspinal anomalies in scoliosis: An MRI analysis of 177 consecutive scoliosis patients. Indian J Orthop, 2009, 44(1): 57-63.
[15]
Ozturk C, Karadereler S, Ornek I, et al. The role of routine magnetic resonance imaging in the preoperative evaluation of adolescent idiopathic scoliosis. Inter Orthop, 2010, 34(4): 543-546.
[16]
Do T, Fras C, Burke S, et al. Clinical value of routine preoperative magnetic resonance imaging in adolescent idiopathic scoliosis. A prospective study of three hundred and twenty-seven patients. J Bone Joint Surg Am, 2001, 83(4): 577-579.
[17]
Porter RW. Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine, 2000, 25(11): 1360-1366.
[18]
Porter RW. The pathogenesis of idiopathic scoliosis: uncoupled neuro-osseous growth?Eur Spine J, 2001, 10(6): 473-481.
[19]
劳立峰,沈建雄,陈正光,等.青少年特发性脊柱侧凸的全脊柱三维MRI特点及与侧凸严重度相关性研究.中华骨科杂志, 2010, 30(5): 468-472.
[20]
Lao LF, Shen JX, Chen ZG, et al. Uncoupled neuro-osseous growth in adolescent idiopathic scoliosis? A preliminary study of 90 adolescents with whole-spine three-dimensional magnetic resonance imaging. Eur Spine J, 2011, 20(7): 1081-1086.
[21]
Chu WC, Lam WW, Chan YL, et al. Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis? study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine, 2006, 31(1): 19-25.
[22]
Sun X, Chu WC, Cheng JC, et al. Do adolescents with a severe idiopathic scoliosis have higher locations of the conus medullaris than healthy adolescents?J Pediatr Orthop, 2008, 28(6): 669-673.
[23]
邱勇,孙旭,朱泽章,等.青少年特发性脊柱侧凸大弯度患者脊髓圆锥位置的MRI研究.中华外科杂志, 2006, 44(20): 1385-1389.
[24]
Kong Y, Shi L, Hui SC, et al. Variation in anisotropy and diffusivity along the medulla oblongata and the whole spinal cord in adolescent idiopathic scoliosis: a pilot study using diffusion tensor imaging. AJNR Am J Neuroradiol, 2014, 35(8): 1621-1627.
[25]
Chau WW, Chu WC, Lam TP, et al. Anatomical origin of abnormal somatosensory-evoked potential (SEP) in Adolescent idiopathic scoliosis with different curve severity and correlation with cerebellar tonsillar level determined by MRI. Spine, 2016, 41(10): E598-604.
[26]
Rousie DL, Deroubaix JP, Joly O, et al. Abnormal connection between lateral and posterior semicircular canal revealed by a new modeling process: origin and physiological consequences. Ann N Y Acad Sci, 2009, 1164(1): 455-457.
[27]
Hitier M, Hamon M, Denise P, et al. Lateral Semicircular Canal Asymmetry in Idiopathic Scoliosis: An Early Link between Biomechanical, Hormonal and Neurosensory Theories?Plos One, 2015, 10(7): e131120.
[28]
Sahlstrand T, Petruson B. A study of labyrinthine function in patients with adolescent idiopathic scoliosis. I. An electro-nystagmographic study. Acta Orthop Scand, 1979, 50(6 Pt 2): 759-769.
[29]
Byl NN, Gray JM. Complex balance reactions in different sensory conditions: adolescents with and without idiopathic scoliosis. J Orthop Res, 1993, 11(2): 215-227.
[30]
Xin SQ, He Y, Fu CW, et al. Euclidean geodesic loops on high-genus surfaces applied to the morphometry of vestibular systems. Med Image Comput Comput Assist Interv, 2011,14(Pt 2):384-392.
[31]
Zeng W, Lui LM, Shi L, et al. Shape analysis of vestibular systems in adolescent idiopathic scoliosis using geodesic spectra Med Image. Comput Comput Assist Interv, 2010, 13(Pt 3): 538-546.
[32]
Wen C, Wang D, Shi L, et al. Landmark constrained registration of high-genus surfaces applied to vestibular system morphometry. Comput Med Imag Graph, 2015, 44:1-12.
[33]
Shi L, Wang D, Chu WC, et al. Automatic MRI segmentation and morphoanatomy analysis of the vestibular system in adolescent idiopathic scoliosis. Neuroimage, 2011, 54(1): S180-S188.
[34]
Geissele AE, Kransdorf MJ, Geyer CA, et al. Magnetic resonance imaging of the brain stem in adolescent idiopathic scoliosis. Spine, 1991, 16(7): 761-763.
[35]
Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum Brain. Res Bull, 2003, 59(5): 511-541.
[36]
Shi L, Wang D, Hui SC, et al. Volumetric changes in cerebellar regions in adolescent idiopathic scoliosis compared with healthy controls. Spine J, 2013, 13(12): 1904-1911.
[37]
孙旭,邱勇,朱泽章. Cobb角大于40°的青少年特发性脊柱侧凸患者的小脑扁桃体位置分析中华骨科杂志, 2007, 27(2): 96-100.
[38]
郭霞,郑振耀,陈宇亮.青少年特发性脊柱侧凸患者的中枢神经异常中国脊柱脊髓杂志, 2000, 10(4): 197-199.
[39]
Cheng JC, Chau WW, Guo X, et al. Redefining the magnetic resonance imaging reference level for the cerebellar tonsil: a study of 170 adolescents with normal versus idiopathic scoliosis. Spine, 2004, 29(1): 815-818.
[40]
Wang D, Shi L, Chu WC, et al. Abnormal cerebral cortical thinning pattern in adolescent girls with idiopathic scoliosis. Neuroimage, 2012, 59(2): 935-942.
[41]
Domenech J, Garcíamartí G, Martíbonmatí L, et al. Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI. Eur Spine J, 2011, 20(7): 1069-1078.
[42]
Shi L, Wang D, Chu WC, et al. Volume-based morphometry of brain MR images in adolescent idiopathic scoliosis and healthy control subjects. AJNR Am J Neuroradiol, 2009, 30(7): 1302-1307.
[43]
Wang D, Shi L, Chu WC, et al. A comparison of morphometric techniques for studying the shape of the corpus callosum in adolescent idiopathic scoliosis. Neuroimage, 2009, 45(3): 738-748.
[44]
Liu T, Chu WC, Young G, et al. MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease. J Magn Reson Imaging, 2008, 27(4): 732-736.
[45]
Joly O, Rousié D, Jissendi P, et al. A new approach to corpus callosum anomalies in idiopathic scoliosis using diffusion tensor magnetic resonance imaging. Eur Spine J, 2014, 23(12): 2643-2649.
[46]
Xue C, Shi L, Hui SC, et al. Reduced white matter integrity at splenium of corpus callosum connecting to somatosensory cortex in adolescent idiopathic scoliosis (AIS) compared with normal control: a cerebral diffusion tensor imaging (DTI) study. J Orthop Transl, 2016, 7(C): 100-105.

PREV Image evaluation of skeletal muscle fat quantification and its clinical value in type 2 diabetes mellitus
NEXT Advances in the application of quantitative magnetic resonance imaging for evaluating the degenerative changes of articular cartilage
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn