Share:
Share this content in WeChat
X
Review
Advances in the application of quantitative magnetic resonance imaging for evaluating the degenerative changes of articular cartilage
LUO Mu-qing  FENG Zhi-chao  LIAO Yun-jie  ZHONG Dong  LI Wan-meng  RONG Peng-fei  WANG Wei 

DOI:10.12015/issn.1674-8034.2018.11.015.


[Abstract] Articular cartilage plays an important role in maintaining the normal structure and function of the joint, and the degeneration of articular cartilage is one of the most important early changes in many joint diseases. Once the articular cartilage is damaged and degenerated, it is difficult to heal and becomes irreversible, so it is very vital to early evaluate and diagnose the degeneration of articular cartilage. MRI can show articular cartilage directly and clearly because of its superior soft tissue contrast. Therefore, it is considered as the best method for evaluating articular cartilage degeneration. With the rapid development of quantitative MRI techniques in recent years, the changes of biochemical composition and structure of early degenerative cartilage can be quantitatively detected before morphological changes occur. In this review, the anatomical physiology of articular cartilage, pathophysiology of degeneration and application advances of various quantitative MRI techniques in degeneration of articular cartilage are summarized.
[Keywords] Cartilage, articular;Cartilage diseases;Magnetic resonance imaging

LUO Mu-qing Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China

FENG Zhi-chao Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China

LIAO Yun-jie Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China

ZHONG Dong Department of Spine Surgery, The Xiangya Hospital of Central South University, Changsha 410008, China

LI Wan-meng Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China

RONG Peng-fei* Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China

WANG Wei Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China

*Corresponding to: Rong PF; E-mail: rongpengfei66@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  National Natural Science Foundation of China No. 81471715
Received  2018-08-01
DOI: 10.12015/issn.1674-8034.2018.11.015
DOI:10.12015/issn.1674-8034.2018.11.015.

[1]
Madry H, Kon E, Condello V, et al. Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc, 2016, 24(6): 1753-1762.
[2]
Möller I, Loza E, Uson J, et al. Recommendations for the use of ultrasound and magnetic resonance in patients with rheumatoid arthritis. Reumatol Clin, 2018, 14(1): 9-19.
[3]
Gellhorn AC, Katz JN, Suri P. Osteoarthritis of the spine: the facet joints. Nat Rev Rheumatol, 2013, 9(4): 216-224.
[4]
刘艳,万业达. 3T MRI关节软骨生化成分成像的研究进展.国际医学放射学杂志, 2014, 37(5): 453-456.
[5]
Zhang LJ, Jerry Hu, Kyriacos A. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng, 2009, 37(1-2): 1-57.
[6]
Burstein D, Gray M, Mosher T, et al. Composition and structure in osteoarthritis. Radiol Clin North Am, 2009, 47(4): 675-686.
[7]
Kim T, Min BH, Yoon SH, et al. An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference. Skeletal radiol, 2014, 43(7): 947-54.
[8]
Wei B, Mao F, Guo Y, et al. Using 7.0 T MRI T2 mapping to detect early changes of the cartilage matrix caused by immobilization in a rabbit model of immobilization-induced osteoarthritis. Magn Reson Imaging, 2015, 33(8): 1000-1006.
[9]
Soellner S, Goldmann A, Muelheims D, et al. Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee. Osteoarthritis Cartilage, 2017, 25(11): 1841-1849.
[10]
Newbould RD, Miller SR, Toms LD, et al. T2* measurement of the knee articular cartilage in osteoarthritis at 3 T. J Magn Reson Imaging, 2012, 35(6): 1422-1429.
[11]
Kretzschmar M, Bieri O, Miska M, et al. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted doubleecho steady-state sequence (dwDESS). Eur Radiol, 2015, 25(4): 980-986.
[12]
Apprich S, Mamisch TC, Welsch GH, et al. Quantitative T2 mapping of the patella at 3.0 T is sensitive to early cartilage degeneration, but also to loading of the knee. Eur J Radiol, 2012, 81(4): 438-443.
[13]
Zhong H, Miller DJ, Urish KL. T2 map signal variation predicts symptomatic osteoarthritis progression: data from the Osteoarthritis Initiative. Skeletal Radiol, 2016, 45(7): 909-913.
[14]
Kijowski R, Blankenbaker DG, Munoz Del Rio A, et al. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology, 2013, 267(2): 503-513.
[15]
Wu Y, Yang R, Jia S, et al. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping. Biomed Mater Eng, 2014, 24(6): 3379-3388.
[16]
Moshe TJ, Smith H, Dardzinski BJ, et al. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol, 2001, 177(3): 665-669.
[17]
Surowiec RK, Lucas EP, Ho CP. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1385-1395.
[18]
Bittersohl B, Hosalkar HS, Miese FR, et al. Zonal T2 and T1Gd assessment of knee joint cartilage in various histological grades of cartilage degeneration: an observational in vitro study. BMJ Open, 2015, 5(2): e006895.
[19]
Bittersohl B, Miese FR, Hosalkar HS, et al. T2* mapping of hip joint cartilage in various histological grades of degeneration. Osteoarthritis Cartilage, 2012, 20(7): 653-660.
[20]
Siebenrock KA, Kienle KP, Steppacher SD, et al. Biochemical MRI predicts hip osteoarthritis in an experimental ovine femoroacetabular impingement model. Clin Orthop Relat Res, 2015, 473(4): 1318-1324.
[21]
Taehee K, Byoung-Hyun M, Seung-Hyun Y, et al. An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference. Skeletal Radiol, 2014, 43(7): 947-954.
[22]
Mamisch TC, Hughes T, Mosher TJ, et al. T2 star relaxation times for assessment of articular cartilage at 3T: a feasibility study. Skeletal Radiol, 2012, 41(3): 287-292.
[23]
Yao K, Troupis JM. Diffusion-weighted imaging and the skeletal system: a literature review. Clin Radiol, 2016, 71(11): 1071-1782.
[24]
Raya JG. Techniques and applications of in vivo diffusion imaging of articular cartilage. J Magn Reson Imaging, 2015, 41(6): 1487-1504.
[25]
Xu J, Xie G, Di Y, et al. Value of T2-mapping and DWI in the diagnosis of early knee cartilage injury. J Radiol Case Rep, 2011, 5(2): 13-18.
[26]
Guha A, Wyatt C, Karampinos DC, et al. Spatial variations in magnetic resonance-based diffusion of articular cartilage in knee osteoarthritis. Magn Reson Imaging, 2015, 33(9): 1051-1058.
[27]
Ferizi U, Rossi I, Lee Y, et al. Diffusion tensor imaging of articular cartilage at 3T correlates with histology and biomechanics in a mechanical injury model. Magn Reson Med, 2017, 78(1): 69-78.
[28]
Raya JG, Horng A, Dietrich O, et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology, 2012, 262(2): 550-559.
[29]
赵丹丹,李红,秦灏,等. DTI在正常成人髌骨软骨的初步应用及临床意义.磁共振成像, 2016, 7(2): 131-135.
[30]
Raya JG, Melkus G, Adam-Neumair S, et al. Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. Radiology, 2013, 266(3): 831-841.
[31]
Raya JG, Dettmann E, Notohamiprodjo M, et al.Feasibility of in vivo diffusion tensor imaging of articular cartilage with coverage of all cartilage regions. Eur Radiol, 2014, 24(7): 1700-1706.
[32]
Wei H, Gibbs E, Zhao P, et al. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage. Magn Reson Med, 2017, 78(5): 1683-1690.
[33]
Newbould RD, Miller SR, Tielbeek JA, et al. Reproducibility of sodium MRI measures of articular cartilage of the knee in osteoarthritis. Osteoarthritis Cartilage, 2012, 20(1): 29-35.
[34]
Wheaton AJ, Borthakur A, Shapiro EM, et al. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging-feasibility study. Radiology, 2004, 231(3): 900-905.
[35]
Madelin G, Babb JS, Xia D, et al. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology, 2013, 268(2): 481-491.
[36]
Chang G, Madelin G, Sherman OH, et al. Improved assessment of cartilage repair tissue using fluid-suppressed 23 Na inversion recovery MRI at 7 Tesla: preliminary results. Eur Radiol, 2012, 22(6): 1341-1349.
[37]
Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging, 2013, 38(3): 511-529.
[38]
Newbould RD, Miller SR, Upadhyay N, et al. T1-weighted sodium MRI of the articulator cartilage in osteoarthritis: a cross sectional and longitudinal study. PloS One, 2013, 8(8): e73067.
[39]
Yoon MA, Hong SJ, Im AL, et al. Comparison of T1rho and T2 Mapping of knee articular cartilage in an asymptomatic population. Korean J Radiol, 2016, 17(6): 912-918.
[40]
Kester BS, Carpenter PM, Yu HJ, et al. T1ρ/T2 mapping and histopathology of degenerative cartilage in advanced knee osteoarthritis. World J Orthop, 2017, 8(4): 350-356.
[41]
Wang L, Regatte RR. Quantitative mapping of human cartilage at 3.0T: parallel changes in T2, T1rho, and dGEMRIC. Acad Radiol, 2014, 21(4): 463-471.
[42]
Hu J, Zhang Y, Duan C, et al. Feasibility study for evaluating early lumbar facet joint degeneration using axial T1ρ, T2, and T2* mapping in cartilage. Magn Reson Imaging, 2017, 46(2): 468-475.
[43]
Sasho T, Katsuragi J, Yamaguchi S. Associations of three-dimensional T1 rho MR mapping and three-dimensional T2 mapping with macroscopic and histologic grading as a biomarker for early articular degeneration of knee cartilage. Clin Rheumatol, 2017, 36(9): 2109-2119.
[44]
Wang L, Regatte RR. T1ρ MRI of human musculoskeletal system. J Magn Reson Imaging, 2015, 41(3): 586-600.
[45]
Hangaard S, Gade JS, Hansen P, et al. Single-vs. double-dose gadolinium contrast in delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in knee osteoarthritis: is dose reduction possible on 3-T MRI?Acta Radiol, 2018, 24: DOI: .
[46]
Jungmann PM, Baum T, Bauer JS, et al. Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques?Biomed Res Int, 2014, 2014(7): 840170.
[47]
Zilkens C, Miese F, Herten M, et al. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study. Eur J Radiol, 2013, 82(2): e81-e86.
[48]
Tiel JV, Bron EE, Tiderius CJ, et al. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage(dGEMRIC)of the knee at 3.0 T in patients with early stage osteoarthritis. Eur Radiol, 2013, 23(2): 496-504.
[49]
Van Tiel J, Kotek G, Reijman M, et al. is T1ρ Mapping an alternative to Delayed gadolinium-enhanced Mr imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees?Radiology, 2016, 279(2): 523-531.
[50]
Verschueren J, van Tiel J, Reijman M, et al. Influence of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) protocol on T2-mapping: is it possible to comprehensively assess knee cartilage composition in one post-contrast MR examination at 3 Tesla?Osteoarthritis Cartilage, 2017, 25(9): 1484-1487.
[51]
Choi JA, Gold GE. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am, 2011, 19(2): 249-282.
[52]
Brinkhof S, Nizak R, Khlebnikov V, et al. Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol, 2018, 28(7): 2874-2881.
[53]
Schmitt B, Zbyn S, Stelzeneder D, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23) Na MR imaging at 7T. Radiology, 2011, 260(1): 257-264.
[54]
Wei W, Lambach B, Jia G, et al. A Phase I clinical trial of the knee to assess the correlation of gagCEST MRI, delayed gadolinium-enhanced MRI of cartilage and T2 mapping. Eur J Radiol, 2017, 90(6): 220-224.
[55]
Kogan F, Hargreaves BA, Gold GE. Volumetric multiclice gagCEST imaging of articular cartilage: optimization and comparison with T1rho. Magn Reson Med, 2017, 77(3): 1134-1141.
[56]
Krishnamoorthy G, Nanga RP, Bagga P, et al. High quality three dimensional gagCEST imaging of in vivo human knee cartilage at 7 Tesla. Magn Reson Med, 2017, 77(5): 1866-1873.
[57]
Rehnitz C, Kupfer J, Streich NA, et al. Comparison of biochemical cartilage imaging techniques at 3T MRI. Osteoarthritis Cartilage, 2014, 22(10): 1732-1742.
[58]
Pauli C, Bae WC, Lee M, et al. Ultrashort-echo time MR imaging of the patella with bicomponent analysis: correlation with histopathologic and polarized light microscopic findings. Radiology, 2012, 264(2): 484-493.
[59]
Williams A, Qian Y, Chu CR. UTE-T2* mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthritis Cartilage, 2011, 19(1): 84-88.
[60]
Shao H, Chang EY, Pauli C, et al. UTE bi-component analysis of T2* relaxation in articular cartilage. Osteoarthritis Cartilage, 2016, 24(2): 364-373.
[61]
Bae WC, Biswas R, Statum S, et al. Sensitivity of quantitative UTE MRI to the biomechanical property of the temporomandibular joint disc. Skeletal Radiol, 2014, 43(9): 1217-1223.
[62]
Du J, Statum S, Znamirowski R, et al. Ultrashort TE T1ρ magic angle imaging. Magn Reson Med, 2013, 69(3): 682-687.
[63]
Chaudhari AS, Sveinsson B, Moran CJ, et al. Imaging and T2 relaxometry of short-T2 connective tissues in the knee using ultrashort echo-time double-echo steady-state (UTEDESS). Magn Reson Med, 2017, 78(6): 2136-2148.
[64]
Boutsikou K, Kostopoulos S, Glotsos D, et al. Texture analysis of articular cartilage traumatic changes in the knee calculated from morphological 3.0T MR imaging. Eur J Radiol, 2013, 82(8): 1266-1272.
[65]
Hofmann FC, Neumann J, Heilmeier U, et al. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative. Skeletal Radiol, 2018, 47(1): 93-106.
[66]
Urish KL, Keffalas MG, Durkin JR, et al. T2 texture index of cartilage can predict early symptomatic OA progression: data from the osteoarthritis initiative. Osteoarthritis Cartilage, 2013, 21(10): 1550-1557.
[67]
Williams A, Winalski CS, Chu CR. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness. J Orthop Res, 2017, 35(3): 699-706.
[68]
Neumann J, Hofmann FC, Heilmeier U, et al. Type 2 diabetes patients have accelerated cartilage matrix degeneration compared to diabetes free controls: data from the osteoarthritis initiative. Osteoarthritis Cartilage, 2018, 26(6): 751-761.

PREV Advances in neuroimaging of adolescent idiopathic scoliosis
NEXT Application of MRI in the diagnosis of fetal lateral ventriculomegaly with nervous system abnormalities
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn