Share:
Share this content in WeChat
X
Review
Imaging study on predicting cerebral hyperperfusion syndrome: A review on different imaging technique
LAN Yi-na  LOU Xin 

DOI:10.12015/issn.1674-8034.2018.12.014.


[Abstract] A rare but potentially fatal postoperative complication after carotid artery stenting (CAS) and carotid endarterectomy (CEA) is cerebral hyperperfusion syndrome (CHS). Predicting CHS plays a pivotal role in prognosis and treatment strategy. And imaging technique is the most commonly applied for predicting CHS. This literature review summarizes the latest study on predicting CHS using different imaging technique.
[Keywords] Carotid artery stenting;Carotid endarterectomy;Cerebral hyperperfusion syndrome;Imaging technique;Magnetic resonance imaging

LAN Yi-na Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China

LOU Xin* Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China

*Corresponding to: Lou X, E-mail:louxin@301hospital.com.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No. 81671126, 81730048 National Key Research and Development Program of China No. 2016YFC01001004
Received  2018-06-13
DOI: 10.12015/issn.1674-8034.2018.12.014
DOI:10.12015/issn.1674-8034.2018.12.014.

[1]
Hollander M, Bots ML, Sol AID, et al. Carotid plaques increase the risk of stroke and subtypes of cerebral infarction in asymptomatic elderly. Circulation, 2002, 105(24): 2872-2877.
[2]
Roubin GS, Iyer S, Halkin A, et al. Realizing the potential of carotid artery stenting: proposed paradigms for patient selection and procedural technique. Circulation, 2006, 113(16): 2021-2030.
[3]
Mayberg MR, Wilson SE, Yatsu F, et al. Carotid endarterectomy and prevention of cerebral ischemia in symptomatic carotid stenosis. Veterans Affairs Cooperative Studies Program 309 Trialist Group. JAMA, 1991, 266(23): 3289-3294.
[4]
Sundt TM, Sharbrough FW, Piepgras DG, et al. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc, 1981, 56(9): 533-543.
[5]
Abou-Chebl A, Yadav JS, Reginelli JP, et al. Intracranial hemorrhage and hyperperfusion syndrome following carotid artery stenting: Risk factors, prevention, and treatment. J Am Coll Cardiol, 2004, 43(9): 1596-1601.
[6]
Coutts SB, Hill MD, Hu WY. Hyperperfusion syndrome: toward a stricter definition. Neurosurgery, 2003, 53(5): 1053-1060.
[7]
Galyfos G, Sianou A, Filis K. Cerebral hyperperfusion syndrome and intracranial hemorrhage after carotid endarterectomy or carotid stenting: A meta-analysis. J Neurol Sci, 2017, 381(10): 74-82.
[8]
van Mook WM, Rennenberg RJ, Schurink GW. Cerebral hyperperfusion syndrome. Lancet Neurol, 2005, 4(12): 877-888.
[9]
Reinhard M, Roth M, Müller T, et al. Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index. Stroke, 2003, 34(9): 2138-2144.
[10]
贾素兰,王晓明.磁敏感加权成像对脑梗死的诊断价值.磁共振成像, 2015, 6(3): 182-186.
[11]
Petrella JR, Provenzale JM. MR perfusion imaging of the brain: techniques and applications. AJR Am J Roentgenol, 2000, 175(1): 207-219.
[12]
Keston P, Murray AD, Jackson A. Cerebral perfusion imaging using contrast-enhanced MRI. Clin Radiol, 2003, 58(7): 505-513.
[13]
Fukuda T, Ogasawara K, Kobayashi M, et al. Prediction of cerebral hyperperfusion after carotid endarterectomy using cerebral blood volume measured by perfusion-weighted MR imaging compared with single-photon emission CT. AJNR Am J Neuroradiol, 2007, 28(4): 737-742.
[14]
郭京华,唐守现,彭伟,等.缺血性脑血管病患者FLAIR血管高信号征三种评分方法的一致性研究.磁共振成像, 2018, 9(5): 340-345.
[15]
Iancu-Gontard D, Oppenheim C, Touzé E, et al. Evaluation of hyperintense vessels on FLAIR MRI for the diagnosis of multiple intracerebral arterial stenoses. Stroke, 2003, 34(8): 1886-1891.
[16]
Hofmeijer J, Klijn CJ, Kappelle LJ, et al. Collateral circulation via the ophthalmic artery or leptomeningeal vessels is associated with impaired cerebral vasoreactivity in patients with symptomatic carotid artery occlusion. Cerebrovasc Dis, 2002, 14(1): 22-26.
[17]
Hong D, Seo HS, Lee YH, et al. Leptomeningeal enhancement on magnetic resonance imaging as a predictor of hemodynamic insufficiency. J Comput Assist Tomogr, 2015, 39(3): 307.
[18]
Wan CC, Chen YT, Tseng YC, et al. Fluid-attenuated inversion recovery vascular hyperintensities in predicting cerebral hyperperfusion after intracranial arterial stenting. Neuroradiol, 2017, 59(8): 791-796.
[19]
Hartkamp NS, Petersen ET, Vis JBD, et al. Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application. Nmr in Biomedicine, 2013, 26(8): 901-912.
[20]
Van Laar PJ, Hendrikse J, Mali WP, et al. Altered flow territories after carotid stenting and carotid endarterectomy. J Vasc Surg, 2007, 45(6): 1155-1161.
[21]
Yamamoto D, Hosoda K, Uchihashi Y, et al. Perioperative changes in cerebral perfusion territories assessed by arterial spin labeling magnetic resonance imaging are associated with postoperative increases in cerebral blood flow in patients with carotid stenosis. World Neurosurgery, 2017, 102(6): 477-486.
[22]
Marchal G, Bosmans H, Van Fraeyenhoven L, et al. Intracranial vascular lesions: Optimization and clinical evaluation of three-dimensional time-of flight MR angiography. Radiology, 1990, 175(2): 443-448.
[23]
Kuroda H, Ogasawara K, Hirooka R, et al. Prediction of cerebral hyperperfusion after carotid endarterectomy using middle cerebral artery signal intensity in preoperative single-slab 3-dimensional time-of-flight magnetic resonance angiography. Neurosurgery, 2009, 64(6): 1065-1071.
[24]
Andereggen L, Amin-Hanjani S, El-Koussy M, et al. Quantitative magnetic resonance angiography as a potential predictor for cerebral hyperperfusion syndrome: a preliminary study. J Neurosurg, 2017, 128(4): 1-9.
[25]
Buczek J, Karliński M, Kobayashi A, et al. Hyperperfusion syndrome after carotid endarterectomy and carotid stenting. Cerebrovasc Dis, 2013, 35(6): 531-537.
[26]
Kablak-Ziembicka A, Przewlocki T, Pieniazek P, et al. Predictors of cerebral reperfusion injury after carotid stenting: the role of transcranial color-coded doppler ultrasonography. J Endovasc Ther, 2010, 17(4): 556.
[27]
Iwata T, Mori T, Tajiri H, et al. Predictors of hyperperfusion syndrome before and immediately after carotid artery stenting in single-photon emission computed tomography and transcranial color-coded real-time sonography studies. Neurosurgery, 2011, 68(3): 649.
[28]
Lai ZC, Liu B, Chen Y, et al. Prediction of cerebral hyperperfusion syndrome with velocity blood pressure index. Chin Med J (Engl), 2015, 128(12): 1611-1617.
[29]
Hoeffner EG, Case I, Jain R, et al. Cerebral perfusion CT: technique and clinical applications. Radiology, 2004, 231(3): 632-644.
[30]
Tseng YC, Hsu HL, Lee TH, et al. Prediction of cerebral hyperperfusion syndrome after carotid stenting: a cerebral perfusion computed tomography study. J Comput Assist Tomogr, 2009, 33(4): 540-545.
[31]
Chang CH, Chang TY, Chang YJ, et al. The role of perfusion computed tomography in the prediction of cerebral hyperperfusion syndrome. PLos One, 2011, 6(5): e19886.
[32]
Yoshie T, Ueda T, Takada T, et al. Prediction of cerebral hyperperfusion syndrome after carotid artery stenting by CT perfusion imaging with acetazolamide challenge. Neuroradiology, 2016, 58(3): 253-259.
[33]
Ogasawara K, Ito H, Sasoh M, et al. Quantitative measurement of regional cerebrovascular reactivity to acetazolamide using 123I-N-isopropyl piodoamphetamine autoradiography with SPECT: validation study using H2 15O with PET. J Nucl Med, 2003, 44(4): 520-525.
[34]
Hosoda K, Kawaguchi T, Shibata Y, et al. Cerebral vasoreactivity and internal carotid artery flow help to identify patients at risk for hyperperfusion after carotid endarterectomy. Stroke, 2001, 32(7): 1567-1573.
[35]
Ogasawara K, Yukawa H, Kobayashi M, et al. Prediction and monitoring of cerebral hyperperfusion after carotid endarterectomy by using single-photon emission computerized tomography scanning. J Neurosurg, 2003, 99(3): 504-510.
[36]
Sato Y, Ogasawara K, Kuroda H, et al. Preoperative central benzodiazepine receptor binding potential and cerebral blood flow images on SPECT predict development of new cerebral ischemic events and cerebral hyperperfusion after carotid endarterectomy. J Nucl Med, 2011, 52(9): 1400-1407.
[37]
Suga Y, Ogasawara K, Saito H, et al. Preoperative cerebral hemodynamic impairment and reactive oxygen species produced during carotid endarterectomy correlate with development of postoperative cerebral hyperperfusion. Stroke, 2007, 47(4): 894-894.
[38]
Matsubara S, Moroi J, Suzuki A, et al. Analysis of cerebral perfusion and metabolism assessed with positron emission tomography before and after carotid artery stenting. Clinical article. J Neurosurg, 2009, 111(1): 28-36.
[39]
Derdeyn CP, Videen TO, Yundt KD, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain, 2002, 125(Pt3): 595-607.
[40]
Kaku Y, Iihara K, Nakajima N, et al. Cerebral blood flow and metabolism of hyperperfusion after cerebral revascularization in patients with moyamoya disease. J Cereb Blood Flow Metab, 2012, 32(11): 2066-2075.
[41]
Lin CJ, Hung SC, Guo WY, et al. Monitoring peri-therapeutic cerebral circulation time: a feasibility study using color-coded quantitative DSA in patients with steno-occlusive arterial disease. AJNR Am J Neuroradiol, 2012, 33(9): 1685-1690.
[42]
Narita S, Aikawa H, Nagata S, et al. Intraprocedural prediction of hemorrhagic cerebral hyperperfusion syndrome after carotid artery stenting. J Stroke Cerebrovasc Dis, 2013, 22(5): 615-619.
[43]
Lin CJ, Chang FC, Tsai FY, et al. Stenotic transverse sinus predisposes to poststenting hyperperfusion syndrome as evidenced by quantitative analysis of peritherapeutic cerebral circulation time. AJNR Am J Neuroradiol, 2014, 35(6): 1132-1136.
[44]
Yamauchi K, Enomoto Y, Otani K, et al. Prediction of hyperperfusion phenomenon after carotid artery stenting and carotid angioplasty using quantitative DSA with cerebral circulation time imaging. J Neurointerv Surg, 2018, 10(6): 576-579.

PREV Atypical ependymoma of the right cerebellar hemisphere with local plastic growth: One case report and literature review
NEXT A diffusion kurtosis imaging study of early injury on the white matter of the bilateral temporal lobes and the hippocampus after radiotherapy in nasopharyngeal carcinoma patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn