Share:
Share this content in WeChat
X
Review
Quantitative analysis of MRI parameters for small hepatocellular carcinoma in the background of cirrhosis
MA Wanjun  GUO Shunlin  PAN Xiaohua  LU Guanwen  CUI Maomao 

Cite this article as: Ma WJ, Guo SL, Pan XH, et al. Quantitative analysis of MRI parameters for small hepatocellular carcinoma in the background of cirrhosis.Chin J Magn Reson Imaging, 2019, 10(1): 68-71. DOI:10.12015/issn.1674-8034.2019.01.013.


[Abstract] Hepatocellular carcinoma (HCC) is the main cause of death in patients with chronic hepatitis cirrhosis. Its early symptoms are atypical, the detection rate is low, and the mortality rate is high. Early diagnosis and treatment of cancerous nodules or small hepatocellular cancer (SHCC) are the most direct and important ways to improve the curative effect of HCC. In recent years, MRI technology has developed rapidly, including dynamic contrast enhanced MRI (DCE-MRI), intravoxel incoherent motion imaging (IVIM), diffusion kurtosis imaging (DKI), T1 mapping, LiverLab and other technologies. A series of pathophysiological and hemodynamic changes in the carcinogenesis of hepatic nodules were analyzed, which significantly increased the detection rate of SHCC. In this paper, correlation research about MRI quantitative parameters analysis of small hepatocellular cancer in the background of cirrhosis will be reviewed.
[Keywords] carcinoma, hepatocellular;magnetic resonance imaging;review

MA Wanjun LanZhou University, LanZhou 730000, China; Department of Radiology, the First Hospital of LanZhou University, LanZhou 730000, China

GUO Shunlin* Department of Radiology, the First Hospital of LanZhou University, LanZhou 730000, China

PAN Xiaohua LanZhou University, LanZhou 730000, China; Department of Radiology, the First Hospital of LanZhou University, LanZhou 730000, China

LU Guanwen LanZhou University, LanZhou 730000, China; Department of Radiology, the First Hospital of LanZhou University, LanZhou 730000, China

CUI Maomao LanZhou University, LanZhou 730000, China; Department of Radiology, the First Hospital of LanZhou University, LanZhou 730000, China

*Corresponding to: Guo SL, Email: guoshunlin@msn.com

Conflicts of interest   None.

Received  2018-07-26
Accepted  2018-10-28
DOI: 10.12015/issn.1674-8034.2019.01.013
Cite this article as: Ma WJ, Guo SL, Pan XH, et al. Quantitative analysis of MRI parameters for small hepatocellular carcinoma in the background of cirrhosis.Chin J Magn Reson Imaging, 2019, 10(1): 68-71. DOI:10.12015/issn.1674-8034.2019.01.013.

[1]
Song P, Tang W, Tamura S, et al. The management of hepatocellular carcinoma in Asia: a guideline combining quantitative and qualitative evaluation. Bioscience trends, 2010, 4(6): 283-287.
[2]
Chatterjee R, Mitra A. An overview of effective therapies and recent advances in biomarkers for chronic liver diseases and associated liver cancer. Int Immunopharmacol, 2015, 24(2): 335-45.
[3]
Murakami T, Baron RL, Peterson MS, et al. Hepatocellular carcinoma: MR imaging with mangafodipir trisodium (Mn-DPDP). Radiology, 1996, 200(1): 69-77.
[4]
Guo DM, Qiu TS, Kang W, et al. Texture analysis of SPIO- enhanced MR imaging in rat models of hepatocellular carcinoma and hepatocirrhosis based on gray level co-occurrence matrix. Chin J Med Imaging Technology, 2010, 26(3): 563-566.
[5]
Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals, 2016, 29(3): 365-376.
[6]
Crossgrove J, Zheng W. Manganese toxicity upon overexposure. NMR Biomed, 2004, 17(8):544-553.
[7]
王长征.退变结节与肝细胞癌超顺磁性氧化铁增强磁共振成像研究.大连:大连医科大学, 2008.
[8]
Chanyaputhipong J, Low SC, Chow PK. Gadoxetate acid-enhanced MR imaging for HCC: a review for clinicians. Int J Hepatol, 2011, 2011:489342.
[9]
Bae K, Na JB, Choi DS, et al. Contrast-enhanced MR cholangiography: comparison of Gd-EOB-DTPA and Mn-DPDP in healthy volunteers. Br J Radiol, 2012, 85(1017): 1250-1254.
[10]
Neri E, Bali MA, Bassalamah A, et al. ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol, 2016, 26(4): 921-931.
[11]
Ng IO, Poon RT, Lee JM, et al. Microvessel density, vascular endothelial growth factor and its receptors Flt-1 and Flk-1/KDR in hepatocellular carcinoma. Am J Clin Pathol, 2001, 116(6): 838-845.
[12]
Kwon HJ, Byun JH, Kim JY, et al. Differentiation of small (</=2 cm) hepatocellular carcinomas from small benign nodules in cirrhotic liver on gadoxetic acid-enhanced and diffusion-weighted magnetic resonance images. Abdom Imaging, 2015, 40(1): 64-75.
[13]
Bartolozzi C, Battaglia V, Bargellini I, et al. Contrast-enhanced magnetic resonance imaging of 102 nodules in cirrhosis: correlation with histological findings on explanted livers. Abdom Imaging, 2013, 38(2): 290-296.
[14]
Zhang W, Chen HJ, Wang ZJ, et al. Dynamic contrast enhanced MR imaging for evaluation of angiogenesis of hepatocellular nodules in liver cirrhosis in N-nitrosodiethylamine induced rat model. Eur Radiol, 2017, 27(5): 2086-2094.
[15]
Jajamovich GH, Huang W, Besa C, et al. DCE-MRI of hepatocellular carcinoma: perfusion quantification with Tofts model versus shutter-speed model-initial experience. MAGMA, 2016, 29(1): 49-58.
[16]
Chen J, Qian T, Zhang H, et al. Combining dynamic contrast enhanced magnetic resonance imaging and microvessel density to assess the angiogenesis after PEI in a rabbit VX2 liver tumor model. Magn Reson imaging, 2016, 34(2): 177-182.
[17]
Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology, 2003, 226(1): 71-78.
[18]
Wirestam R, Borg M, Brockstedt S, et al. Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol, 2001, 42(2): 123-128.
[19]
Zhu SC, Liu YH, Wei Y, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: Comparison with conventional diffusion-weighted imaging. World J Gastroenterol, 2018, 24(8): 929-940.
[20]
Granata V, Fusco R, Catalano O, et al. Intravoxel incoherent motion (IVIM) in diffusion-weighted imaging (DWI) for Hepatocellular carcinoma: correlation with histologic grade. Oncotarget, 2016, 7(48): 79357-79364.
[21]
Woo S, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade. Radiology. 2014, 270(3): 758-767.
[22]
Wagner M, Doblas S, Daire JL, et al. Diffusion-weighted MR imaging for the regional characterization of liver tumors. Radiology, 2012, 264(2): 464-472.
[23]
Rosenkrantz AB, Padhani AR, Chenevert TL, et al. Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging, 2015, 42(5): 1190-1202.
[24]
Anderson SW, Barry B, Soto J, et al. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling. J Magn Reson Imaging, 2014, 39(4): 827-834.
[25]
Goshima S, Kanematsu M, Noda Y, et al. Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma. AJR Am J Roentgenol, 2015, 204(5): W543-549.
[26]
Wang WT, Yang L, Yang ZX, et al. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging. Radiology, 2018, 286(2): 571-580.
[27]
白岩,姜兴岳,张洁,等. 3.0 T resolve-DWI与SS-EPI DWI在大鼠颅脑成像中的对比分析.中国医学影像技术, 2016, 32(9): 1325-1329.
[28]
Ding Y, Rao SX, Meng T, et al. Usefulness of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging in assessment of non-alcoholic fatty liver disease. Eur Radiol, 2014, 24(4): 959-966.
[29]
Katsube T, Okada M, Kumano S, et al. Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Invest Radiol, 2011, 46(4): 277-283.
[30]
Yoshimura N, Saito K, Saguchi T, et al. Distinguishing hepatic hemangiomas from metastatic tumors using T1 mapping on gadoxetic-acid-enhanced MRI. Magn Resone Imaging, 2013, 31(1): 23-27.
[31]
Peng Z, Jiang M, Cai H, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging combined with T1 mapping predicts the degree of differentiation in hepatocellular carcinoma. BMC cancer. 2016, 16: 625.
[32]
Peng Z, Li C, Chan T, et al. Quantitative evaluation of Gd-EOB-DTPA uptake in focal liver lesions by using T1 mapping: differences between hepatocellular carcinoma, hepatic focal nodular hyperplasia and cavernous hemangioma. Oncotarget, 2017, 8(39): 65435-65444.
[33]
刘丹,宋彬,黄子星,等.大鼠肝癌相关结节铁含量的MRI与病理对照研究.四川大学学报(医学版), 2016, 47(3): 376-380.
[34]
陈晓飞. HISTO、SiX-echo DIXON技术对NAFLD患者肝脏脂肪变性及铁沉积的定量研究.济南:山东大学, 2017.
[35]
Pineda N, Sharma P, Xu Q, et al. Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy-a rapid and accurate technique. Radiology, 2009, 252(2): 568-576.
[36]
刘华平,李文政,李海兰,等.磁共振成像技术在肝脏铁过载的应用进展.磁共振成像, 2017, 8(6): 475-480.
[37]
Labranche R, Gilbert G, Cerny M, et al. Liver iron quantification with MR imaging: a primer for radiologists. Radiographics, 2018, 38(2): 392-412.
[38]
Sharma SD, Hernando D, Horng DE, et al. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med, 2015, 74(3): 673-683.

PREV Study progress in magnetic resonance imaging and analysis methods in hemifacial spasm
NEXT Research advances of DWI in prostate cancer diagnosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn