Share:
Share this content in WeChat
X
Review
Research advances of DWI in prostate cancer diagnosis
CHEN Yufei  LIU Jianyu 

Cite this article as: Chen YF, Liu JY. Research advances of DWI in prostate cancer diagnosis. Chin J Magn Reson Imaging, 2019, 10(1): 72-76. DOI:10.12015/issn.1674-8034.2019.01.014.


[Abstract] Diffusion weighted imaging (DWI) can detect the degree of water molecules diffusion noninvasively, playing an important role in the diagnosis of prostate cancer. In recent years, the development of several mathematical models, including conventional mono-exponential DWI, diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) model, is likely to enhance the value of DWI in prostate cancer. This article introduces these mathematical models briefly and reviews their research advances in the detection, diagnosis, differential diagnosis and aggressiveness assessment of prostate cancer.
[Keywords] prostatic neoplasms;magnetic resonance imaging

CHEN Yufei Department of Radiology, Peking University Third Hospital, Beijing 100191, China

LIU Jianyu* Department of Radiology, Peking University Third Hospital, Beijing 100191, China

*Corresponding to: Liu JY, E-mail: jyliubysy@163.com

Conflicts of interest   None.

Received  2018-07-18
Accepted  2018-09-15
DOI: 10.12015/issn.1674-8034.2019.01.014
Cite this article as: Chen YF, Liu JY. Research advances of DWI in prostate cancer diagnosis. Chin J Magn Reson Imaging, 2019, 10(1): 72-76. DOI:10.12015/issn.1674-8034.2019.01.014.

[1]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012, CA Cancer J Clin, 2015, 65(2): 87-108.
[2]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015, CA Cancer J Clin, 2016, 66(2): 115-132.
[3]
Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol, 2007, 188(6): 1622-1635.
[4]
Kim CK, Park BK, Kim B. Diffusion-weighted MRI at 3 T for the evaluation of prostate cancer. AJR Am J Roentgenol, 2010, 194(6): 1461-1469.
[5]
Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS prostate imaging - reporting and data system: 2015, Version 2. Eur Urol, 2016, 69(1): 16-40.
[6]
Rosenkrantz AB, Hindman N, Lim RP, et al. Diffusion-weighted imaging of the prostate: Comparison of b1000 and b2000 image sets for index lesion detection. J Magn Reson Imaging, 2013, 38(3): 694-700.
[7]
Wang X, Qian Y, Liu B, et al. High-b-value diffusion-weighted MRI for the detection of prostate cancer at 3 T. Clin Radiol, 2014, 69(11): 1165-1170.
[8]
Koo JH, Kim CK, Choi D, et al. Diffusion-weighted magnetic resonance imaging for the evaluation of prostate cancer: optimal B value at 3T. Korean J Radiol, 2013, 14(1): 61-69.
[9]
Ohgiya Y, Suyama J, Seino N, et al. Diagnostic accuracy of ultra-high-b-value 3.0-T diffusion-weighted MR imaging for detection of prostate cancer. Clin Imaging, 2012, 36(5): 526-531.
[10]
Lawrence EM, Warren AY, Priest AN, et al. Evaluating prostate cancer using fractional tissue composition of radical prostatectomy specimens and pre-operative diffusional kurtosis magnetic resonance imaging. PLoS One, 2016, 11(7): e0159652.
[11]
Stejskal EO, Tanner JE. Spin diffusion measurements: spin echos in the presence of a time-dependent field gradient. J Chem Physiol, 1965, 42(1): 288-292.
[12]
Merisaari H, Toivonen J, Pesola M, et al. Diffusion-weighted imaging of prostate cancer: effect of b-value distribution on repeatability and cancer characterization. Magn Reson Imaging, 2015, 33(10): 1212-1218.
[13]
Basser PJ, Mattiello J, Lebihan D. MR diffusion tensor spectroscopy and imaging. Biophys J, 1994, 66(1): 259-267.
[14]
Pang Y, Turkbey B, Bernardo M, et al. Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med, 2013, 69(2): 553-562.
[15]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6): 1432-1440.
[16]
Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988, 168(2): 497-505.
[17]
Moussa AS, Meshref A, Schoenfield L, et al. Importance of additional"extreme" anterior apical needle biopsies in the initial detection of prostate cancer. Urology, 2010, 75(5): 1034-1039.
[18]
Boesen L. Multiparametric MRI in detection and staging of prostate cancer. Dan Med J, 2017, 64(2): B5327.
[19]
Katahira K, Takahara T, Kwee TC, et al. Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol, 2011, 21(1): 188-196.
[20]
Barral M, Cornud F, Neuzillet Y, et al. Characteristics of undetected prostate cancer on diffusion-weighted MR Imaging at 3-Tesla with a b-value of 2000 s/mm(2): imaging-pathologic correlation. Diagn Interv Imaging, 2015, 96(9): 923-929.
[21]
Rosenkrantz AB, Kong X, Niver BE, et al. Prostate cancer: comparison of tumor visibility on trace diffusion-weighted images and the apparent diffusion coefficient map. AJR Am J Roentgenol, 2011, 196(1): 123-129.
[22]
Park SY, Kim CK, Park BK, et al. Diffusion-tensor MRI at 3 T: differentiation of central gland prostate cancer from benign prostatic hyperplasia. AJR Am J Roentgenol, 2014, 202(3): W254-262.
[23]
Dopfert J, Lemke A, Weidner A, et al. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging, 2011, 29(8): 1053-1058.
[24]
Tamada T, Prabhu V, Li J, et al. Prostate Cancer: diffusion-weighted MR Imaging for detection and assessment of aggressiveness-comparison between conventional and kurtosis models. Radiology, 2017, 284(1): 100-108.
[25]
Quentin M, Schimmoller L, Arsov C, et al. Increased signal intensity of prostate lesions on high b-value diffusion-weighted images as a predictive sign of malignancy. Eur Radiol, 2014, 24(1): 209-213.
[26]
Nagel KN, Schouten MG, Hambrock T, et al. Differentiation of prostatitis and prostate cancer by using diffusion-weighted MR imaging and MR- guided biopsy at 3 T. Radiology, 2013, 267(1): 164-172.
[27]
Zhang J, Jing H, Han X, et al. Diffusion-weighted imaging of prostate cancer on 3T MR: Relationship between apparent diffusion coefficient values and Ki-67 expression. Acad Radiol, 2013, 20(12): 1535-1541.
[28]
Peng Y, Jiang Y, Antic T, et al. Apparent diffusion coefficient for prostate cancer imaging: impact of B values. AJR Am J Roentgenol, 2014, 202(3): W247-253.
[29]
Litjens GJ, Hambrock T, Hulsbergen-Van De Kaa C, et al. Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness. Radiology, 2012, 265(1): 260-266.
[30]
Manenti G, Carlani M, Mancino S, et al. Diffusion tensor magnetic resonance imaging of prostate cancer. Invest Radiol, 2007, 42(6): 412-419.
[31]
Gurses B, Tasdelen N, Yencilek F, et al. Diagnostic utility of DTI in prostate cancer. Eur J Radiol, 2011, 79(2): 172-176.
[32]
Uribe CF, Jones EC, Chang SD, et al. In vivo 3 T and ex vivo 7T diffusion tensor imaging of prostate cancer: Correlation with histology. Magn Reson Imaging, 2015, 33(5): 577-583.
[33]
Tian W, Zhang J, Tian F, et al. Correlation of diffusion tensor imaging parameters and Gleason scores of prostate cancer. Exp Ther Med, 2018, 15(1): 351-356.
[34]
Rosenkrantz AB, Sigmund EE, Johnson G, et al. Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology, 2012, 264(1): 126-135.
[35]
Mazzoni LN, Lucarini S, Chiti S, et al. Diffusion-weighted signal models in healthy and cancerous peripheral prostate tissues: comparison of outcomes obtained at different b-values. J Magn Reson Imaging, 2014, 39(3): 512-518.
[36]
Valerio M, Zini C, Fierro D, et al. 3T multiparametric MRI of the prostate: does intravoxel incoherent motion diffusion imaging have a role in the detection and stratification of prostate cancer in the peripheral zone? Eur J Radiol, 2016, 85(4): 790-794.
[37]
Shinmoto H, Tamura C, Soga S, et al. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol, 2012, 199(4): W496-500.
[38]
Epstein JI, Egevad L, Amin MB, et al. The 2014 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol, 2016, 40(2): 244-252.
[39]
Bittencourt LK, Barentsz JO, De Miranda LC, et al. Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason Grades than TRUS-guided biopsies in peripheral zone tumours. Eur Radiol, 2012, 22(2): 468-475.
[40]
Park SY, Oh YT, Jung DC, et al. Diffusion-weighted imaging predicts upgrading of Gleason score in biopsy-proven low grade prostate cancers. BJU Int, 2017, 119(1): 57-66.
[41]
Henderson DR, De Souza NM, Thomas K, et al. Nine-year follow- up for a study of diffusion-weighted magnetic resonance imaging in a prospective prostate cancer active surveillance cohort. Eur Urol, 2016, 69(6): 1028-1033.
[42]
Zhang YD, Wang Q, Wu CJ, et al. The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer. Eur Radiol, 2015, 25(4): 994-1004.

PREV Quantitative analysis of MRI parameters for small hepatocellular carcinoma in the background of cirrhosis
NEXT Application of MRI in diagnosis of lumbar spinal stenosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn