Share:
Share this content in WeChat
X
Review
Applications of amide proton transfer weighted imaging in tumor
ZHANG Siyu  SUN Hongzan 

Cite this article as: Zhang XY, Sun HZ. Applications of amide proton transfer weighted imaging in tumor. Chin J Magn Reson Imaging, 2019, 10(8): 629-632. DOI:10.12015/issn.1674-8034.2019.08.015.


[Abstract] Amide proton transfer weighted (APTw) imaging is an emerging molecular magnetic resonance imaging technique based on chemical exchange saturation transfer (CEST). APTw imaging has shown promise in oncologic imaging, especially in the imaging of brain tumors. This review article illustrates the theory of APTw imaging and describes the clinical utility and potential for future development of APTw imaging.
[Keywords] amide proton transfer;chemical exchange saturation transfer;tumor;magnetic resonance imaging

ZHANG Siyu Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

SUN Hongzan* Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

*Corresponding to: Sun HZ, E-mail: sunhongzan@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of Provincial Key Research and Development Program and Guidance Program of Liaoning No. 2017225012
Received  2019-03-06
Accepted  2019-05-08
DOI: 10.12015/issn.1674-8034.2019.08.015
Cite this article as: Zhang XY, Sun HZ. Applications of amide proton transfer weighted imaging in tumor. Chin J Magn Reson Imaging, 2019, 10(8): 629-632. DOI:10.12015/issn.1674-8034.2019.08.015.

[1]
Zhou J, Lal B, Wilson DA, et al. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med, 2003, 50(6): 1120-1126.
[2]
Zhou J, Payen JF, Wilson DA, et al. Using the amide proton signals of intracellular proteins to detect PH effects in MRI. Nat Med, 2003, 9(8): 1085-1090.
[3]
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson, 2000, 143(1): 79-87.
[4]
van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): What is in a name and what isn't?. Magn Reson Med, 2011, 65(4): 927-948.
[5]
Yan K, Fu Z, Yang C, et al. Assessing amide proton transfer (APT) MRI contrast origins in 9 L gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol, 2015, 17(4): 479-487.
[6]
Zhou J, Wilson DA, Sun PZ, et al. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med, 2004, 51(5): 945-952.
[7]
Zhou J, Zhu H, Lim M, et al. Three-dimensional amide proton transfer mr imaging of gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging, 2013, 38(5): 1119-1128.
[8]
Togao O, Hiwatashi A, Yamashita K, et al. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer mr imaging: Comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol, 2017, 27(2): 578-588.
[9]
Jiang S, Eberhart CG, Zhang Y, et al. Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. Eur J Cancer, 2017, 83: 9-18.
[10]
Su C, Liu C, Zhao L, et al. Amide proton transfer imaging allows detection of glioma grades and tumor proliferation: Comparison with Ki-67 expression and proton mr spectroscopy imaging. AJNR Am J Neuroradiol, 2017, 38(9): 1702-1709.
[11]
Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: Correlation with histopathological grades. Neuro Oncol, 2014, 16(3): 441-448.
[12]
Joo B, Han K, Choi YS, et al. Amide proton transfer imaging for differentiation of benign and atypical meningiomas. Eur Radiol, 2018, 28(1): 331-339.
[13]
Yu H, Lou H, Zou T, et al. Applying protein-based amide proton transfer mr imaging to distinguish solitary brain metastases from glioblastoma. Eur Radiol, 2017, 27(11): 4516-4524.
[14]
Jiang S, Yu H, Wang X, et al. Molecular mri differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer mr imaging at 3 Tesla. Eur Radiol, 2016, 26(1): 64-71.
[15]
Mullins ME, Barest GD, Schaefer PW, et al. Radiation necrosis versus glioma recurrence: Conventional mr imaging clues to diagnosis. AJNR Am J Neuroradiol, 2005, 26(8): 1967-1972.
[16]
Fiveash JB, Sa S. Role of radiation therapy and radiosurgery in glioblastomamultiforme. Cancer J, 2003, 9(3): 222-229.
[17]
Ma B, Blakeley JO, Hong X, et al. Applying amide proton transfer-weighted mri to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging, 2016, 44(2): 456-462.
[18]
Park KJ, Kim HS, Park JE, et al. Added value of amide proton transfer imaging to conventional and perfusion mr imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol, 2016, 26(12): 4390-4403.
[19]
Jiang S, Eberhart CG, Lim M, et al. Identifying recurrent malignant glioma after treatment using amide proton transfer-weighted MR imaging: A validation study with image-guided stereotactic biopsy. Clin Cancer Res, 2019, 25(2): 552-561.
[20]
Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N England J Med, 2015, 372(26): 2499-2508.
[21]
Jiang S, Zou T, Eberhart CG, et al. Predicting idh mutation status in grade ii gliomas using amide proton transfer-weighted (APTW) MRI. Magn Reson Med, 2017, 78(3): 1100-1109.
[22]
Wen Z, Hu S, Huang F, et al. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage, 2010, 51(2): 616-622.
[23]
Park JE, HS K, Park KJ, et al. Pre- and posttreatment glioma: Comparison of amide proton transfer imaging with mr spectroscopy for biomarkers of tumor proliferation. Radiology, 2016, 278(2): 514-523.
[24]
Jeong HK, Han K, Zhou J, et al. Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3T MRI. Eur Radiol, 2017, 27(4): 1577-1584.
[25]
Wang M, Hong X, Chang CF, et al. Simultaneous detection and separation of hyperacute intracerebral hemorrhage and cerebral ischemia using amide proton transfer MRI. Magn Reson Med, 2015, 74(1): 42-50.
[26]
Zheng S, van der Bom IM, Zu Z, et al. Chemical exchange saturation transfer effect in blood. Magn Reson Med, 2014, 71(3): 1082-1092.
[27]
Bohara M, Kamimura K, Nakajo M, et al. Amide proton transfer imaging of cavernous malformation in the cavernous sinus. Magn Reson Med Sci, 2019, 18(2): 109-110.
[28]
Yu L, Li C, Luo X, et al. Differentiation of malignant and benign head and neck tumors with amide proton transfer-weighted mr imaging. Mol Imaging Biol, 2019, 21(2): 348-355.
[29]
Law BKH, King AD, Ai QY, et al. Head and neck tumors: Amide proton transfer MRI. Radiology, 2018, 288(3): 782-790.
[30]
Ohno Y, Yui M, Koyama H, et al. Chemical exchange saturation transfer MR imaging: Preliminary results for differentiation of malignant and benign thoracic lesions. Radiology, 2016, 279(2): 578-589.
[31]
Ohno Y, Kishida Y, Seki S, et al. Amide proton transfer-weighted imaging to differentiate malignant from benign pulmonary lesions: Comparison with diffusion-weighted imaging and FDG-PRT/CT. J Magn Reson Imaging, 2018, 47(4): 1013-1021.
[32]
Jia G, Abaza R, Williams JD, et al. Amide proton transfer MR imaging of prostate cancer: A preliminary study. J Magn Reson Imaging, 2011, 33(3): 647-654.
[33]
Nishie A, Takayama Y, Asayama Y, et al. Amide proton transfer imaging can predict tumor grade in rectal cancer. Magn Reson Med, 2018, 51: 96-103.
[34]
Takayama Y, Nishie A, Togao O, et al. Amide proton transfer MR imaging of endometrioid endometrial adenocarcinoma: Association with histologic grade. Radiology, 2018, 286(3): 909-917.

PREV Quantitative assessment of MRI for treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A review
NEXT Progress indiffusion-weighted imaging of skeletal muscle
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn