Share:
Share this content in WeChat
X
Paying a Tribute to 70 Years of Healthcare Development
The review and the future of functional magnetic resonance imaging
DU Xiaoxia  QIN Zhaoxia 

Cite this article as: Du XX, Qin ZX. The review and the future of functional magnetic resonance imaging. Chin J Magn Reson Imaging, 2019, 10(10): 721-726. DOI:10.12015/issn.1674-8034.2019.10.001.


[Abstract] Magnetic resonance functional imaging generally refers to functional magnetic resonance imaging (fMRI) based on blood oxygen level dependence (BOLD), which responds to changes in deoxyhemoglobin concentration consequent to task-induced or spontaneous modulation of neural metabolism. Since its inception in 1990, fMRI as a non-invasive tool with good spatial resolution, has been used in a large number of studies in the cognitive neurosciences, clinical psychiatry/psychology, and presurgical planning; and fMRI is increasingly being used as a biomarker for disease, and to monitor therapy or for studying pharmacological efficacy. Recently, pattern classification and other statistical methods have been applied to data analysis of functional imaging, real-time feedback has developed rapidly, and fMRI will be more involved in clinical medicine. This paper reviews the methods, the application and the future of fMRI.
[Keywords] functional magnetic resonance imaging;brain function;cognitive neuroscience;mental illness;blood oxygen level dependent

DU Xiaoxia * Shanghai Key Laboratory of Magnetic Resonance & Department of Physics, School of Physics and Electronic Science East China Normal University, Shanghai 200062, China

QIN Zhaoxia Shanghai Key Laboratory of Magnetic Resonance & Department of Physics, School of Physics and Electronic Science East China Normal University, Shanghai 200062, China

*Corresponding to: Du XX, E-mail: xxdu@phy.ecnu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No. 81571658
Received  2019-09-02
DOI: 10.12015/issn.1674-8034.2019.10.001
Cite this article as: Du XX, Qin ZX. The review and the future of functional magnetic resonance imaging. Chin J Magn Reson Imaging, 2019, 10(10): 721-726. DOI:10.12015/issn.1674-8034.2019.10.001.

[1]
Belliveau JW, Kennedy DN, McKinstry RC, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 1991, 254(5032): 716-719.
[2]
Kwong KK. Record of a single fMRI experiment in May of 1991. NeuroImage, 2012, 62(2): 610-612.
[3]
Ogawa S. Finding the BOLD effect in brain images. NeuroImage, 2012, 62(2): 608-609.
[4]
Ugurbil K. Development of functional imaging in the human brain (fMRI); the University of Minnesota experience. NeuroImage, 2012, 62(2): 613-619.
[5]
Bandettini PA, Wong EC, Hinks RS, et al. Time course EPI of human brain function during task activation. Magn Reson Med, 1992, 25(2): 390-397.
[6]
Blamire AM, Ogawa S, Ugurbil K, et al. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci U S A, 1992, 89(22): 11069-11073.
[7]
Frahm J, Merboldt KD, Hanicke W. Functional MRI of human brain activation at high spatial resolution. Magn Reson Med, 1993, 29(1): 139-144.
[8]
Turner R, Jezzard P, Wen H, et al. Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med, 1993, 29(2): 277-279.
[9]
Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A, 1992, 89(12): 5675-5679.
[10]
Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A, 1992, 89(13): 5951-5955.
[11]
Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab, 1997, 17(1): 64-72.
[12]
Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med, 1998, 39(6): 855-864.
[13]
Davis TL, Kwong KK, Weisskoff RM, et al. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A, 1998, 95(4): 1834-1839.
[14]
Ogawa S, Lee TM. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med, 1990, 16(1): 9-18.
[15]
Ogawa S, Lee TM, Nayak AS, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med, 1990, 14(1): 68-78.
[16]
Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990, 87(24): 9868-9872.
[17]
Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J, 1993, 64(3): 803-812.
[18]
Weisskoff RM, Zuo CS, Boxerman JL, et al. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med, 1994, 31(6): 601-610.
[19]
Yacoub E, Van De Moortele PF, Shmuel A, et al. Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. NeuroImage, 2005, 24(3): 738-750.
[20]
Shmuel A, Yacoub E, Chaimow D, et al. Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. NeuroImage, 2007, 35(2): 539-552.
[21]
Friston KJ, Holmes AP, Poline JB, et al. Analysis of fMRI time-series revisited. NeuroImage, 1995, 2(1): 45-53.
[22]
Worsley KJ, Liao CH, Aston J, et al. A general statistical analysis for fMRI data. NeuroImage, 2002, 15(1): 1-15.
[23]
Calhoun VD, Adali T, Pearlson GD, et al. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp, 2001, 14(3): 140-151.
[24]
Gabriel M, Brennan NP, Peck KK, et al. Blood oxygen level dependent functional magnetic resonance imaging for presurgical planning. Neuroimaging Clin N Am, 2014, 24(4): 557-571.
[25]
Benjamin CF, Walshaw PD, Hale K, et al. Presurgical language fMRI: Mapping of six critical regions. Hum Brain Mapp, 2017, 38(8): 4239-4255.
[26]
Pillai JJ. The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol, 2010, 31(2): 219-225.
[27]
Sunaert S. Presurgical planning for tumor resectioning. J Magn Reson Imaging, 2006, 23(6): 887-905.
[28]
李恩中,高家红,卢光明,等.神经功能成像及其在重大脑疾病中的应用.中国科学:生命科学, 2015, 45(3): 237-246.
[29]
Wandschneider B, Koepp MJ. Pharmaco fMRI: Determining the functional anatomy of the effects of medication. NeuroImage Clin, 2016, 12: 691-697.
[30]
付桢,胡楠,潘翠环,等.脑卒中患者手运动功能康复的功能磁共振成像研究进展.中国康复理论与实践, 2015, 21(11): 1277-1281.
[31]
Hodics T, Cohen LG, Cramer SC. Functional imaging of intervention effects in stroke motor rehabilitation. Arch Phys Med Rehabil, 2006, 87(12Suppl 2): S36-42.
[32]
王岩,翁旭初.人类技巧学习的脑功能成像研究进展.心理科学进展, 2003, 11(2): 136-140.
[33]
Bedny M, Pascual-Leone A, Dodell-Feder D, et al. Language processing in the occipital cortex of congenitally blind adults. Proc Natl Acad Sci U S A, 2011, 108(11): 4429-4434.
[34]
Amedi A, Raz N, Pianka P, et al. Early 'visual' cortex activation correlates with superior verbal memory performance in the blind. Nature Neurosci, 2003, 6(7): 758-766.
[35]
Amedi A, Floel A, Knecht S, et al. Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nature Neurosci, 2004, 7(11): 1266-1270.
[36]
厍映霞,王帅文,张宏霞,等.静息态功能磁共振在阿尔茨海默病早期诊断的研究进展.磁共振成像, 2018, 9(1): 64-68.
[37]
Rosen BR, Savoy RL. fMRI at 20: has it changed the world?. NeuroImage, 2012, 62(2): 1316-1324.
[38]
王秀丽,黄晓琦,龚启勇.神经精神疾病的功能磁共振成像研究进展.磁共振成像, 2012, 3(1): 61-68.
[39]
谢磊,马晔,马树华,等.静息态脑功能MRI在药物成瘾中的研究进展.磁共振成像, 2016, 7(3): 230-235.
[40]
张静,黄炳升,张家宁,等.品行障碍脑功能结构成像研究进展.中国医学影像技术, 2017, 33(5): 782-786.
[41]
Mwansisya TE, Hu A, Li Y, et al. Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophr Res, 2017, 189: 9-18.
[42]
Brooks JO, 3rd, Vizueta N. Diagnostic and clinical implications of functional neuroimaging in bipolar disorder. J Psychiatr Res, 2014, 57: 12-25.
[43]
Gong Q, He Y. Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry, 2015, 77(3): 223-235.
[44]
Owen AM, Coleman MR, Boly M, et al. Detecting awareness in the vegetative state. Science, 2006, 313(5792): 1402.
[45]
Schiff ND, Rodriguez-Moreno D, Kamal A, et al. fMRI reveals largescale network activation in minimally conscious patients. Neurology, 2005, 64(3): 514-523.
[46]
Greene JD, Nystrom LE, Engell AD, et al. The neural bases of cognitive conflict and control in moral judgment. Neuron, 2004, 44(2): 389-400.
[47]
Soon CS, Brass M, Heinze HJ, et al. Unconscious determinants of free decisions in the human brain. Nature Neurosci, 2008, 11(5): 543-545.
[48]
Bodurka J, Bandettini PA. Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes. Magn Reson Med, 2002, 47(6): 1052-1058.
[49]
Le Bihan D, Urayama S, Aso T, et al. Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc Natl Acad Sci U S A, 2006, 103(21): 8263-8268.
[50]
Haynes JD. A Primer on Pattern-Based Approaches to fMRI: Principles, pitfalls, and perspectives. Neuron, 2015, 87(2): 257-270.
[51]
Watanabe T, Sasaki Y, Shibata K, et al. Advances in fMRI real-time neurofeedback. Trends Cogn Sci, 2017, 21(12): 997-1010.
[52]
Caria A, Sitaram R, Birbaumer N. Real-time fMRI: a tool for local brain regulation. Neuroscientist, 2012, 18(5): 487-501.
[53]
Sokunbi MO. Feedback of real-time fMRI signals: From concepts and principles to therapeutic interventions. Magn Reson Med, 2017, 35: 117-124.
[54]
Schwarz AJ, Gozzi A, Reese T, et al. In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI. NeuroImage, 2007, 34(4): 1627-1636.
[55]
Carmichael O, Schwarz AJ, Chatham CH, et al. The role of fMRI in drug development. Drug Discov Today, 2018, 23(2): 333-348.
[56]
Laureys S, Owen AM, Schiff ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol, 2004, 3(9): 537-546.

PREV The advances of study on apoptosis molecular imaging through magnetic resonance
NEXT CMR in China of the last 30 years
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn