Share:
Share this content in WeChat
X
Review
The research progress of intravoxel incoherent motion MRI in head and neck cancers
FU Xiao  MIAO Zhongchang 

Cite this article as: Fu X, Miao ZC. The research progress of intravoxel incoherent motion MRI in head and neck cancers. Chin J Magn Reson Imaging, 2019, 10(11): 864-868. DOI:10.12015/issn.1674-8034.2019.11.016.


[Abstract] Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) is an emerging magnetic resonance examination technique in recent years, which can simultaneously obtain tissue diffusion and perfusion information.By quantitative measurement of IVIM derived parameters (D, D* and f), differential diagnosis of benign and malignant tumors can be made. This article aims to review the principles of IVIM and its application in head and neck cancers.
[Keywords] neoplasms;magnetic resonance imaging

FU Xiao Department of Radiology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China

MIAO Zhongchang * Department of Radiology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China

*Corresponding to: Miao ZC, E-mail: lygzhchmiao@163.com

Conflicts of interest   None.

Received  2019-04-29
DOI: 10.12015/issn.1674-8034.2019.11.016
Cite this article as: Fu X, Miao ZC. The research progress of intravoxel incoherent motion MRI in head and neck cancers. Chin J Magn Reson Imaging, 2019, 10(11): 864-868. DOI:10.12015/issn.1674-8034.2019.11.016.

[1]
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
[2]
Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988, 168(2): 497-505.
[3]
Fournet G, Li JR, Cerjanic AM, et al. A two-pool model to describe the IVIM cerebral perfusion. J Cereb Blood Flow Metab, 2017, 37(8): 2987-3000.
[4]
Pawlik G, Rackl A, Bing RJ. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res, 1981, 208(1): 35-58.
[5]
Henkelman RM. Does IVIM measure classical perfusion? Magn Reson Med, 1990, 16(3): 470-475.
[6]
Le Bihan D, Turner R. The capillary network: a link between IVIM and classical perfusion. Magn Reson Med, 1992, 27(1): 171-178.
[7]
Zhang J, Xia C, Liu Y, et al. Comparative study of MR mTI-ASL and DSC-PWI in evaluating cerebral hemodynamics of patients with Moyamoya disease. Medicine (Baltimore), 2018, 97(41): e12768.
[8]
Zhang SX, Yao YH, Zhang S, et al. Comparative study of DSC-PWI and 3D-ASL in ischemic stroke patients. J Huazhong Univ Sci Technolog Med Sci, 2015, 35(6): 923-927.
[9]
Iima M, Reynaud O, Tsurugizawa T, et al. Characterization of glioma microcirculation and tissue features using intravoxel incoherent motion magnetic resonance imaging in a rat brain model. Invest Radiol, 2014, 49(7): 485-490.
[10]
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging: pilot study. Radiology, 2008, 249(3): 891-899.
[11]
Lemke A, Stieltjes B, Schad L R, et al. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magnetic Resonance Imaging, 2011, 29(6): 766-776.
[12]
Tang L, Zhou XJ. Diffusion MRI of cancer: From low to high b-values. J Magn Reson Imaging, 2019, 49(1): 23-40.
[13]
Sumi M, Nakamura T. Head and neck tumours: combined MRI assessment based on IVIM and TIC analyses for the differentiation of tumors of different histological types. Eur Radiol, 2014, 24(1): 223-231.
[14]
Sakamoto J, Imaizumi A, Sasaki Y, et al. Comparison of accuracy of intravoxel incoherent motion and apparent diffusion coefficient techniques for predicting malignancy of head and neck tumors using half-Fourier single-shot turbo spin-echo diffusion-weighted imaging. Magn Reson Imaging, 2014, 32(7): 860-866.
[15]
Yu XP, Hou J, Li FP, et al. Intravoxel incoherent motion diffusion weighted magnetic resonance imaging for differentiation between nasopharyngeal carcinoma and lymphoma at the primary site. J Comput Assist Tomogr, 2016, 40(3): 413-418.
[16]
Marzi S, Piludu F, Vidiri A. Assessment of diffusion parameters by intravoxel incoherent motion MRI in head and neck squamous cell carcinoma. NMR Biomed, 2013, 26(12): 1806-1814.
[17]
Tan H, Chen J, Zhao YL, et al. Feasibility of intravoxel incoherent motion for differentiating benign and malignant thyroid nodules academic. Radiology, 2019, 26(2): 147-153.
[18]
Lai V, Li X, Lee VH, et al. Nasopharyngeal carcinoma: comparison of diffusion and perfusion characteristics between different tumour stages using intravoxel incoherent motion MR imaging. Eur Radiol, 2014, 24(1): 176-183.
[19]
Ai Q, King AD, Chan JS, et al. Distinguishing early-stage nasopharyngeal carcinoma from benign hyperplasia using intravoxel incoherent motion diffusion-weighted MRI. Eur Radiol, 2019, 29(10): 5627-5634.
[20]
Fujima N, Sakashita T, Homma A, et al. Utility of a hybrid IVIM-DKI model to predict the development of distant metastasis in head and neck squamous cell carcinoma patients. Magn Reson Med Sci, 2018, 17(1): 21-27.
[21]
Iima M, Le Bihan D. Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology, 2016, 278(1): 13-32.
[22]
Fujima N, Yoshida D, Sakashita T, et al. Prediction of the treatment outcome using intravoxel incoherent motion and diffusional kurtosis imaging in nasal or sinonasal squamous cell carcinoma patients. Eur Radiol, 2017, 27(3): 956-965.
[23]
Guo W, Luo D, Lin M, et al. Pretreatment intra-voxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in predicting induction chemotherapy response in locally advanced hypopharyngeal carcinoma. Medicine (Baltimore), 2016, 95(10): e3039.
[24]
Xiao-ping Y, Jing H, Fei-ping L, et al. Intravoxel incoherent motion MRI for predicting early response to induction chemotherapy and chemoradiotherapy in patients with nasopharyngeal carcinoma. J Magn Reson Imaging, 2016, 43(5): 1179-1190.
[25]
Ding Y, Hazle JD, Mohamed AS, et al. Intravoxel incoherent motion imaging kinetics during chemoradiotherapy for human papillomavirus-associated squamous cell carcinoma of the oropharynx: preliminary results from a prospective pilot study. NMR Biomed, 2015, 28(12): 1645-1654.
[26]
Xiao Y, Pan J, Chen Y, et al. Intravoxel incoherent motion-magnetic resonance imaging as an early predictor of treatment response to neoadjuvant chemotherapy in locoregionally advanced nasopharyngeal carcinoma. Medicine (Baltimore), 2015, 94(24): e973.
[27]
Hauser T, Essig M, Jensen A, et al. Prediction of treatment response in head and neck carcinomas using IVIM-DWI: Evaluation of lymph node metastasis. Eur J Radiol, 2014, 83(5): 783-787.
[28]
Hauser T, Essig M, Jensen A, et al. Characterization and therapy monitoring of head and neck carcinomas using diffusion-imaging-based intravoxel incoherent motion parameters-preliminary results. Neuroradiology, 2013, 55(5): 527-536.
[29]
Vandecaveye V, De Keyzer F, Vander PV, et al. Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology, 2009, 251(1): 134-146.
[30]
Liang L, Luo X, Lian Z, et al. Lymph node metastasis in head and neck squamous carcinoma: Efficacy of intravoxel incoherent motion magnetic resonance imaging for the differential diagnosis. Eur J Radiol, 2017, 90: 159-165.
[31]
Hejduk B, Bobek-Billewicz B, Rutkowski T, et al. Application of Intravoxel Incoherent Motion (IVIM) Model for Differentiation Between Metastatic and Non-Metastatic Head and Neck Lymph Nodes. Pol J Radiol, 2017, 82: 506-510.
[32]
Mikayama R, Yabuuchi H, Sonoda S, et al. Comparison of intravoxel incoherent motion diffusion-weighted imaging between turbo spin-echo and echo-planar imaging of the head and neck. Eur Radiol, 2018, 28(1): 316-324.
[33]
Mikayama R, Yabuuchi H, Sonoda S, et al. Comparison of intravoxel incoherent motion diffusion-weighted imaging between turbo spin-echo and echo-planar imaging of the head and neck. Eur Radiol, 2018, 28(1): 316-324.
[34]
Panyarak W, Chikui T, Yamashita Y, et al. Image Quality and ADC Assessment in Turbo Spin-Echo and Echo-Planar Diffusion-Weighted MR Imaging of Tumors of the Head and Neck. Acad Radiol, 2019, 26(10): e305-e316.
[35]
Ozgen B, Bulut E, Dolgun A, et al. Accuracy of turbo spin-echo diffusion-weighted imaging signal intensity measurements for the diagnosis of cholesteatoma. Diagn Interv Radiol, 2017, 23(4): 300-306.

PREV New progress in the evaluation of ischemic penumbra by magnetic resonance imaging
NEXT The application progress of magnetic resonance future tracking technique to evaluate myocardial strain
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn