Share:
Share this content in WeChat
X
Review
Research progress of 7.0 T MRI in the central nervous system diseases
HE Jing  WANG Min  LIU Xu  ZHANG Jin  WEI Hong'en 

Cite this article as: He J, Wang M, Liu X, et al. Research progress of 7.0 T MRI in the central nervous system diseases. Chin J Magn Reson Imaging, 2019, 10(12): 928-932. DOI:10.12015/issn.1674-8034.2019.12.012.


[Abstract] The central nervous system diseases are complex and diverse, easily cause irreversible damage, and the prognosis is poor. Early intervention can significantly improve the prognosis. 7.0 T MRI (7.0 tesla magnetic resonance imaging) can provide better neuroimaging than conventional MRI, especially in small and early lesions, opening up a new broad road in diagnosis and clinical study of central nervous system diseases. This article incorporates the latest literature at home and abroad to discuss the latest advances in 7.0 T MRI in central nervous system diseases.
[Keywords] magnetic resonance imaging;cerebrovascular disease;movement disorders;epilepsy;multiple sclerosis;autism;dementia

HE Jing Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

WANG Min Department of Neurology, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan 030001, China

LIU Xu Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

ZHANG Jin* Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan 030001, China

WEI Hong'en* Department of Neurology, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan 030001, China

* Corresponding to: Zhang J, E-mail: zhangjin7007@aliyun.com Wei HE, E-mail: hongen. wei@sxmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No. 81671364 China Postdoctoral Science Foundation Funded Project No. 2017M611195 Outstanding Youth Talents Program of Shanxi Province No. 2015009 Natural Science Foundation of Shanxi No.201801D211010
Received  2019-07-03
DOI: 10.12015/issn.1674-8034.2019.12.012
Cite this article as: He J, Wang M, Liu X, et al. Research progress of 7.0 T MRI in the central nervous system diseases. Chin J Magn Reson Imaging, 2019, 10(12): 928-932. DOI:10.12015/issn.1674-8034.2019.12.012.

[1]
Trattnig S, Springer E, Bogner W, et al. Key clinical benefits of neuroimaging at 7 T. Neuroimage, 2018, 168: 477-489.
[2]
Duyn JH. The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage, 2012, 62(2): 1241-1248 .
[3]
Obusez EC, Lowe M, Oh SH, et al. 7 T MR of intracranial pathology: Preliminary observations and comparisons to 3T and 1.5 T. Neuroimage, 2018, 168: 459-476.
[4]
van der Kolk AG, Hendrikse J, Zwanenburg JJ, et al. Clinical applications of 7 T MRI in the brain. Eur J Radiol, 2013, 82(5): 708-718 .
[5]
De Cocker LJ, Lindenholz A, Zwanenburg JJ, et al. Clinical vascular imaging in the brain at 7 T. Neuroimage, 2018, 168: 452-458.
[6]
Matsushige T, Chen B, Dammann P, et al. Microanatomy of the subcallosal artery: an in-vivo 7 T magnetic resonance angiography study. Eur Radiol, 2016, 26(9): 2908-2914.
[7]
Matsushige T, Kraemer M, Schlamann M, et al. Ventricular microaneurysms in moyamoya angiopathy visualized with 7 T MR angiography. AJNR Am J Neuroradiol, 2016, 37(9): 1669-1672.
[8]
van der Kolk AG, Zwanenburg JJ, Denswil NP, et al. Imaging the intracranial atherosclerotic vessel wall using 7 T MRI: initial comparison with histopathology. AJNR Am J Neuroradiol, 2015, 36(4): 694-701.
[9]
Harteveld AA, van der Kolk AG, van der Worp HB, et al. Detecting intracranial vessel wall lesions with 7 T-magnetic resonance imaging: Patients with posterior circulation ischemia versus healthy controls. Stroke, 2017, 48(9): 2601-2604.
[10]
Bouvy WH, Zwanenburg JJM, Reinink R, et al. Perivascular spaces on 7 Tesla brain MRI are related to markers of small vessel disease but not to age or cardiovascular risk factors. J Cereb Blood Flow Metab, 2016, 36(10): 1708-1717.
[11]
Haller S, Badoud S, Nguyen D, et al. Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results. Eur Radiol, 2013, 23(1): 12-19.
[12]
Cosottini M, Frosini D, Pesaresi I, et al. Comparison of 3 T and 7 T susceptibility-weighted angiography of the substantia nigra in diagnosing Parkinson disease. AJNR Am J Neuroradiol, 2015, 36(3): 461-466.
[13]
Mishra AK, ur Rasheed MS, Shukla S, et al. Aberrant autophagy and parkinsonism: does correction rescue from disease progression?. Mol Neurobiol, 2015, 51(3): 893-908.
[14]
Kwon DH, Kim JM, Oh SH, et al. Seven-tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol, 2012, 71(2): 267-277.
[15]
Bartzokis G, Lu PH, Tishler TA, et al. Myelin breakdown and iron changes in Huntington's disease: pathogenesis and treatment implications. Neurochem Res, 2007, 32(10): 1655-1664.
[16]
van Bergen JMG, Hua J, Unschuld PG, et al. Quantitative susceptibility mapping suggests altered brain iron in premanifest huntington disease. AJNR Am J Neuroradiol, 2015, 37(5): 789-796.
[17]
Apple AC, Possin KL, Satris G, et al. Quantitative 7 T phase imaging in premanifest huntington disease. AJNR Am J Neuroradiol, 2014, 35(9): 1707-1713.
[18]
Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol, 2019, 15(4): 234-242.
[19]
Patriat R, Cooper SE, Duchin Y, et al. Individualized tractography-based parcellation of the globus pallidus pars interna using 7 T MRI in movement disorder patients prior to DBS surgery. Neuroimage, 2018, 178: 198-209.
[20]
Ruber T, David B, Elger CE. MRI in epilepsy: clinical standard and evolution. Curr Opin Neurol, 2018, 31(2): 223-231.
[21]
Shah P, Bassett DS, Wisse LEM, et al. Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy:A 7 T MRI study. Hum Brain Mapp, 2019, 40(8): 2390-2398.
[22]
Wisse LE, Gerritsen L, Zwanenburg JJ, et al. Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment. Neuroimage, 2012, 61(4): 1043-1049.
[23]
Santyr BG, Goubran M, Lau JC, et al. Investigation of hippocampal substructures in focal temporal lobe epilepsy with and without hippocampal sclerosis at 7 T. J Magn Res Imaging, 2017, 45(5): 1359-1370.
[24]
Crino PB. Focal cortical dysplasia. Semin Neurol, 2015, 35(3): 201-208 .
[25]
De Ciantis A, Barba C, Tassi L, et al. 7 T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia, 2016, 57(3): 445-454.
[26]
Colon AJ, van Osch MJ, Buijs M, et al. Detection superiority of 7 T MRI protocol in patients with epilepsy and suspected focal cortical dysplasia. Acta Neurol Belg, 2016, 116(3): 259-269 .
[27]
Garg N, Smith TW. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav, 2015, 5(9): e00362.
[28]
Jiang Q, Chawla S, Kister I, et al. Longitudinal study of multiple sclerosis lesions using ultra-high field (7T) multiparametric MR imaging. PLoS One, 2018, 13(9): e0202918.
[29]
Kutzelnigg A, Lassmann H. Cortical demyelination in multiple sclerosis: a substrate for cognitive deficits?. J Neurol Sci, 2006, 245(1-2): 123-126.
[30]
Beck ES, Sati P, Sethi V, et al. Improved visualization of cortical lesions in multiple sclerosis using 7 T MP2RAGE. AJNR Am J Neuroradiol, 2018, 39(3): 459-466.
[31]
Harrison DM, Oh J, Roy S, et al. Thalamic lesions in multiple sclerosis by 7T MRI: Clinical implications and relationship to cortical pathology. Mult Scler, 2015, 21(9): 1139-1150.
[32]
Wuerfel J, Sinnecker T, Ringelstein EB, et al. Lesion morphology at 7 Tesla MRI differentiates susac syndrome from multiple sclerosis. Mult Scler, 2012, 18(11): 1592-1599.
[33]
蔚洪恩,胡风云. BTBR小鼠动物模型在孤独症研究中的作用.中华实用儿科临床杂志, 2015, 30(24): 1918-1920.
[34]
Ellegood J, Babineau BA, Henkelman RM, et al. Neuroanatomical analysis of the BTBR mouse model of autism using magnetic resonance imaging and diffusion tensor imaging. Neuroimage, 2013, 70: 288-300.
[35]
Dodero L, Damiano M, Galbusera A, et al. Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+TF/J mouse model of autism. PLoS One, 2013, 8(10): e76655.
[36]
Nikolaev A, Ashaie S, Hallikainen M, et al. Effects of morphological family on word recognition in normal aging, mild cognitive impairment, and Alzheimer's disease. Cortex, 2019, 116: 91-103.
[37]
Zeineh MM, Chen Y, Kitzler HH, et al. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging, 2015, 36(9): 2483-2500.
[38]
Bulk M, Abdelmoula WM, Nabuurs RJA, et al. Postmortem MRI and histology demonstrate differential iron accumulation and cortical myelin organization in early- and late-onset Alzheimer's disease. Neurobiol Aging, 2018, 62: 231-242.
[39]
蔚洪恩,于欣.脑微梗死的研究进展.中国卒中杂志, 2018, 13(4): 409-414.
[40]
van Rooden S, Goos JD, van Opstal AM, et al. Increased number of microinfarcts in Alzheimer disease at 7-T MR imaging. Radiology, 2014, 270(1): 205-211.
[41]
Bouvy WH, Kuijf HJ, Zwanenburg JJ, et al. Abnormalities of cerebral deep medullary veins on 7 Tesla MRI in amnestic mild cognitive impairment and early Alzheimer's disease: A pilot study. J Alzheimers Dis, 2017, 57(3): 705-710.
[42]
van Veluw SJ, Zwanenburg JJ, Engelen-Lee J, et al. In vivo detection of cerebral cortical microinfarcts with high-resolution 7 T MRI. J Cereb Blood Flow Metab, 2013, 33(3): 322-329.
[43]
McKiernan EF, O'Brien JT. 7T MRI for neurodegenerative dementias in vivo: a systematic review of the literature. J Neurol Neurosurg Psychiatry, 2017, 88(7): 564-574.

PREV Advances in the effects of preeclampsia on brain structure and function
NEXT Application of functional magnetic resonance imaging in mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn