Share:
Share this content in WeChat
X
Technical Article
The digital method for eddy-current precompensation based on high resolution gradient waveform generator
YANG Fan  XU Juncheng  YAO Shouquan  LI Jianqi  JIANG Yu 

Cite this article as: Yang F, Xu JC, Yao SQ, et al. The digital method for eddy-current precompensation based on high resolution gradient waveform generator. Chin J Magn Reson Imaging, 2020, 11(5): 354-359. DOI:10.12015/issn.1674-8034.2020.05.007.


[Abstract] Objective: A digital method for eddy-current precompensation based on high resolution gradient waveform generator is proposed.Materials and Methods: Digital precompensation waveform is calculated from standard gradient waveform by field programmable gate array (FPGA). Then the original waveform and precompensation waveform are transmitted into two separated digital-to-analog converters (DAC) and transformed to analog signals respectively. Finally, compensated waveform is generated by adding the two analog waveforms. Besides, the precompensation waveform described by five various exponential decay terms is calculated timely using high-speed clock and synchronization trigger method.Results: Digital eddy-current precompensation based on two 20 bit DACs achieved higher resolution, and more precise than 23 bit resolution. Meanwhile, this method considerably reduced delay time between compensated waveform and trigger signal as well as keep it constant.Conclusions: High resolution method achieves better experimental result than analog or traditional digital eddy-current precompensation method.
[Keywords] magnetic resonance imaging;gradient;eddy-current precompensation;preemphasis;field programmable gate array;digital-to-analog converter

YANG Fan Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

XU Juncheng Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

YAO Shouquan Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

LI Jianqi Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

JIANG Yu* Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

*Correspondence to: Jiang Y, E-mail: yjiang@phy.ecnu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This article is supported by the National Natural Science Foundation of China No. 21874045 Shanghai Science and Technology Innovation Action Plan No. 19142202900
Received  2020-02-22
Accepted  2020-04-10
DOI: 10.12015/issn.1674-8034.2020.05.007
Cite this article as: Yang F, Xu JC, Yao SQ, et al. The digital method for eddy-current precompensation based on high resolution gradient waveform generator. Chin J Magn Reson Imaging, 2020, 11(5): 354-359. DOI:10.12015/issn.1674-8034.2020.05.007.

[1]
Woods JC, Conradi MS. 3 He diffusion MRI in human lungs. J Magn Reson, 2018, 292(7): 90-98.
[2]
李杨曈,王蓝博,孙洪赞. Rs-fMRI与DTI在轻度认知障碍中的联合应用.磁共振成像, 2019, 10(12): 933-936.
[3]
Bernstein M, King K, Zhou X. Handbook of MRI pulse sequence. New York: Elsevier Academic Press, 2004: 317-322.
[4]
Adair A, Goora FG, Newling B. Magnetic field gradient waveform correction of motion-sensitized SPRITE by pre-equalization. J Magn Reson, 2019, 298(1): 58-63.
[5]
Jehenson P, Westphal M, Schuff N. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in nmr systems. J Magn Reson, 1990, 90(2): 264-278.
[6]
李钰,胡坤,罗庆,等.具有预失真功能的梯度波形发生器.电子测量与仪器学报, 2015, 29(9): 1374-1381.
[7]
潘文宇,张富,罗海,等.一种基于高性能DSP的MRI梯度计算模块设计.中国医疗器械杂志, 2011, 35(3): 189-193.
[8]
黄朝晖,张志,陈黎,等. MRI梯度预加重模块的分时复用设计.波谱学杂志, 2018, 35(4): 465-474.
[9]
胡坤,宁瑞鹏.具有独立延时功能的脉冲序列发生器.波谱学杂志, 2017, 34(3): 347-356.
[10]
王鹤,宁瑞鹏,刘燕,等.在数字化MRI谱仪系统设计中消除梯度抖动的方法.波谱学杂志, 2008, 25(1): 39-45.
[11]
Goora FG, Colpitts BG, Balcom BJ. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique. J Magn Reson, 2014, 238(1): 70-76.
[12]
Jürgen R, Peter M, Peter B, et al. Rapid acquisition of the 3D MRI gradient impulse response function using a simple phantom measurement. Magn Reson Med.2019, 82(7): 2146-2159.
[13]
何汶静,祝元仲,王文周,等.磁共振梯度涡流场的定量实验与分析.生物医学工程学杂志, 2017, 34(2): 220-226.
[14]
牛超群,王秋良,李毅,等.评估磁共振成像系统电磁安全的数值计算方法.高电压技术, 2017, 43(8): 2442-2453.
[15]
何群,周堃,包尚联.一种基于峰值定位法的一阶匀场新方法.中国医学影像技术, 2009, 25(12): 2290-2293.
[16]
崔妍,肖亮.磁共振成像谱仪B0信号的高精度发生与测试.波谱学杂志, 2018, 35(2): 170-177.
[17]
Schmithorst VJ, Dardzinski BJ. Automatic gradient preemphasis adjustment: a 15-minute journey to improved diffusion-weighted echo-planar imaging. Magn Reson Med, 2002, 47(1): 208-212.
[18]
Bartusek K, Kubasek R, Fiala P. Determination of pre-emphasis constants for eddy current reduction. Meas Sci Technol, 2010, 21(10): 105601.

PREV Correlative study of magnetic resonance T2-mapping and DTI in sheep knee cartilage degeneration
NEXT Multimodal MRI findings and misdiagnosis analysis of adult medulloblastoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn