Share:
Share this content in WeChat
X
Review
The research progress of cardiac magnetic resonance to assess hypertensive heart disease
YANG Zhaoxia  ZHOU Ning  XIA Liming 

Cite this article as: Yang ZX, Zhou N, Xia LM. The research progress of cardiac magnetic resonance to assess hypertensive heart disease. Chin J Magn Reson Imaging, 2020, 11(5): 377-381. DOI:10.12015/issn.1674-8034.2020.05.014.


[Abstract] Hypertensive heart disease (HHD) is one of the most common chronic cardiovascular diseases worldwide, which is characterized by the changes in left ventricular structure and function, including development of diastolic dysfunction, left ventricular hypertrophy and diffuse myocardial fibrosis. As a non-invasive imaging technology, cardiac magnetic resonance imaging (CMR) plays an important role in the diagnosis and treatment of cardiovascular diseases. This article will review these recent research advances of CMR in the evaluation of left ventricular function, cardiac remodeling, myocardial fibrosis, epicardial fat and prognosis in HHD.
[Keywords] heart diseases;hypertension;hypertrophy, left ventricular;magnetic resonance imaging

YANG Zhaoxia Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

ZHOU Ning Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

XIA Liming* Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

*Corresponding to: Xia LM, E-mail: lmxia@tjh.tjmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This article is supported by National Natural Science Foundation of China No. 81873889
Received  2019-12-10
Accepted  2020-02-12
DOI: 10.12015/issn.1674-8034.2020.05.014
Cite this article as: Yang ZX, Zhou N, Xia LM. The research progress of cardiac magnetic resonance to assess hypertensive heart disease. Chin J Magn Reson Imaging, 2020, 11(5): 377-381. DOI:10.12015/issn.1674-8034.2020.05.014.

[1]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. J Hypertens, 2018, 36(10): 1953-2041.
[2]
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation, 2016, 133(4): e38.
[3]
Díez J, González A, López, Querejeta R, et al. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nature Clin Pract Cardiovascul Med, 2005, 2(4): 209-216.
[4]
Díez J, Frohlich ED. A translational approach to hypertensive heart disease. Hypertension, 2010, 55(1): 1-8.
[5]
Shenasa, M, Shenasa, H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol, 2017, 237: 60-63.
[6]
Drazner MH. The progression of hypertensive heart disease. Circulation, 2011, 123(3): 327-334.
[7]
Gerdts E, Okin PM, Cramariuc D, et al. Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan intervention for endpoint reduction in hypertension study. Hypertension, 2008, 51(4): 1109-1114.
[8]
Lund BP, Gohlke-Barwolf C, Cramariuc D, et al. Effect of obesity on left ventricular mass and systolic function in patients with asymptomatic aortic stenosis (a simvastatin ezetimibe in aortic stenosis [SEAS] substudy). Am J Cardiol, 2010, 105(10): 1456-1460.
[9]
Drazner MH, Dries DL, Peshock RM, et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas heart study. Hypertension, 2005, 46(1): 124-129.
[10]
Slivnick J, Lampert BC. Hypertension and heart failure. Heart Fail Clin, 2019, 15(4): 531-541.
[11]
Cramariuc D, Gerdts E. Epidemiology of left ventricular hypertrophy in hypertension: implications for the clinic. Expert Rev Cardiovasc Ther, 2016, 14(8): 915-926.
[12]
Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation, 2006, 113(17): 2089-2096.
[13]
Kelm M, Strauer BE. Coronary flow reserve measurements in hypertension. Med Clin North Am, 2004, 88(1): 99-113.
[14]
Qin W, Rudolph AE, Bond BR, et al. Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ Res, 2003, 93(1): 69-76.
[15]
Jain A, Tandri H, Dalal D, et al. Diagnostic and prognostic utility of electrocardiography for left ventricular hypertrophy defined by magnetic resonance imaging in relationship to ethnicity: the multi-ethnic study of atherosclerosis (MESA). Am Heart J, 2010, 159(4): 652-658.
[16]
Mavrogeni S, Katsi V, Vartela V, et al. The emerging role of Cardiovascular Magnetic Resonance in the evaluation of hypertensive heart disease. BMC Cardiovasc Disord, 2017, 17(1): 132.
[17]
Sandner TA, Houck P, Runge VM, et al. Accuracy of accelerated cine MR imaging at 3 Tesla in longitudinal follow-up of cardiac function. Eur Radiol, 2008, 18(10): 2095-2101.
[18]
Pavlopoulos H, Grapsa J, Stefanadi E, et al. The evolution of diastolic dysfunction in the hypertensive disease. Eur J Echocardiogr, 2008, 9(6): 772-778.
[19]
Pavlopoulos H, Nihoyannopoulos P. Regional left ventricular distribution of abnormal segmental relaxation evaluated by strain echocardiography and the incremental value over annular diastolic velocities in hypertensive patients with normal global diastolic function. Eur J Echocardiogr, 2009, 10(5): 654-662.
[20]
Abraham TP, Dimaano VL, Liang HY. Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation, 2007, 116(22): 2597-2609.
[21]
Foll D, Jung B, Staehle F, et al. Visualization of multidirectional regional left ventricular dynamics by high-temporal-resolution tissue phase mapping. J Magn Reson Imaging, 2009, 29(5): 1043-1052.
[22]
Foll D, Jung B, Germann E, et al. Hypertensive heart disease: MR tissue phase mapping reveals altered left ventricular rotation and regional myocardial long-axis velocities. Eur Radiol, 2013, 23(2): 339-347.
[23]
Gaasch WH, Zile MR. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. J Am Coll Cardiol, 2011, 58(17): 1733-1740.
[24]
Amzulescu MS, Langet H, Pasquet A, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619.
[25]
Morris DA, Otani K, Bekfani T, et al. Multidirectional global left ventricular systolic function in normal subjects and patients with hypertension: multicenter evaluation. J Am Soc Echocardiogr, 2014, 27(5): 493-500.
[26]
Schuster A, Hor KN, Kowallick JT, et al. Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications. Circ Cardiovasc Imaging, 2016, 9(4): e004077.
[27]
Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart, 2014, 100(21): 1673-1680.
[28]
Saito M, Khan F, Stoklosa T, et al. Prognostic implications of LV strain risk score in asymptomatic patients with hypertensive heart disease. JACC Cardiovasc Imaging, 2016, 9(8): 911-921.
[29]
Wu LM, Wu R, Ou YR, et al. Fibrosis quantification in hypertensive heart disease with LVH and Non-LVH: findings from T1 mapping and contrast-free cardiac diffusion-weighted imaging. Sci Rep, 2017, 7(1): 559.
[30]
Li L, Chen X, Yin G, et al. Early detection of left atrial dysfunction assessed by CMR feature tracking in hypertensive patients. Eur Radiol, 2020, 30(2):702-711.
[31]
Dweck MR, Joshi S, Murigu T, et al. Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2012, 14: 50.
[32]
Messerli FH, Rimoldi SF, Bangalore S. The Transition from hypertension to heart failure: contemporary update. JACC Heart Fail, 2017, 5(8): 543-551.
[33]
Rodrigues JC, Amadu AM, Dastidar AG, et al. Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart, 2016, 102(20): 1671-1679.
[34]
From AM, Maleszewski JJ, Rihal CS. Current status of endomyocardial biopsy. Mayo Clin Proc, 2011, 86(11): 1095-1102.
[35]
Raman V. The hypertensive heart. An integrated understanding informed by imaging. J Am Coll Cardiol, 2010, 55(2): 91-96.
[36]
Nordin S, Dancy L, Moon JC, et al. Clinical applications of multiparametric CMR in left ventricular hypertrophy. Int J Cardiovasc Imaging, 2018, 34(4): 577-585.
[37]
Rudolph A, Bohl S, Boye P, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol, 2009, 53(3): 284-291.
[38]
Moreo A, Ambrosio G, De Chiara B, et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging, 2009, 2(6): 437-443.
[39]
Janardhanan R, Kramer CM. Imaging in hypertensive heart disease. Expert Rev Cardiovasc Ther, 2011, 9(2): 199-209.
[40]
Radenkovic D, Weingartner S, Ricketts L, et al. T1 mapping in cardiac MRI. Heart Fail Rev, 2017, 22(4): 415-430.
[41]
Coelho-Filho OR, Mongeon FP, Mitchell R, et al. Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging, 2013, 6(1): 134-141.
[42]
Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a society for cardiovascular magnetic resonance (SCMR) and CMR working group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson, 2013, 15(1): 92.
[43]
Taylor AJ, Salerno M, Dharmakumar R, et al. T1 Mapping: Basic Techniques and Clinical Applications. JACC Cardiovasc Imaging, 2016, 9(1): 67-81.
[44]
Miller CA, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging, 2013, 6(3): 373-383.
[45]
Coelho-Filho OR, Shah RV, Mitchell R, et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation, 2013, 128(11): 1225-1233.
[46]
Coelho-Filho OR, Shah RV, Neilan TG, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc, 2014, 3(3): e000790.
[47]
Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging, 2015, 8(2): 172-180.
[48]
Treibel TA, Zemrak F, Sado DM, et al. Extracellular volume quantification in isolated hypertension - changes at the detectable limits? J Cardiovasc Magn Reson, 2015, 17(1): 74.
[49]
Mascherbauer J, Marzluf BA, Tufaro C, et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging, 2013, 6(6): 1056-1065.
[50]
Nguyen C, Fan Z, Sharif B, et al. In vivo three-dimensional high resolution cardiac diffusion-weighted MRI_ a motion compensated diffusion prepared balanced steady-state free precession approach. Magn Reson Med, 2014, 72(5): 1257-1267.
[51]
Pop M, Ghuger NR, Ramanan V, et al. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods. Phys Med Biol, 2013, 58(15): 5009-5028.
[52]
Nguyen C, Lu M, Fan Z, et al. Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2015, 17: 107.
[53]
Sengul C, Ozveren O. Epicardial adipose tissue: a review of physiology, pathophysiology, and clinical applications. Anadolu Kardiyol Derg, 2013, 13(3): 261-265.
[54]
Sironi AM, Pingitore A, Ghione S, et al. Early hypertension is associated with reduced regional cardiac function, insulin resistance, epicardial, and visceral fat.. Hypertension, 2008, 51(2): 282-288.
[55]
Dey D, Nakazato R, Li D, et al. Epicardial and thoracic fat - Noninvasive measurement and clinical implications. Cardiovasc Diagn Ther, 2012, 2(2): 85-93.
[56]
Dicker D, Atar E, Kornowski R, et al. Increased epicardial adipose tissue thickness as a predictor for hypertension: a cross-sectional observational study. J Clin Hypertens, 2013, 15(12): 893-898.
[57]
Doesch C, Haghi D, Suselbeck T, et al. Impact of functional, morphological and clinical parameters on epicardial adipose tissue in patients with coronary artery disease. Circ J, 2012, 76(10): 2426-2434.
[58]
Homsi R, Meier SM, Gieseke J, et al. 3D-Dixon MRI based volumetry of peri- and epicardial fat. Int J Cardiovasc Imaging, 2016, 32(2): 291-299.
[59]
Homsi R, Sprinkart AM, Gieseke J, et al. 3D-Dixon cardiac magnetic resonance detects an increased epicardial fat volume in hypertensive men with myocardial infarction. Eur J Radiol, 2016, 85(5): 936-942.
[60]
Homsi R, Kuetting D, Steinfeld N, et al. Interrelations of epicardial fat volume, left ventricular T1-relaxation times and myocardial strain in hypertensive patients: a cardiac magnetic resonance study. J Thorac Imaging, 2017, 32(3): 169-175.
[61]
Austys D, Dobrovolskij A, Jablonskiene V, et al. Epicardial adipose tissue accumulation and essential hypertension in non-obese adults. Medicina (Kaunas), 2019, 55(8): 458.
[62]
López B, Querejeta R, González A, et al. Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. J Am Coll Cardiol, 2004, 43(11): 2028-2035.
[63]
Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation, 2000, 102(12): 1388-1393.
[64]
Díez J, Querejeta R, López B, et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation, 2002, 105(21): 2512-2517.

PREV Progress of vestibular paroxysmia in magnetic resonance imaging
NEXT Progress of blood oxygen level dependent MRI in diabetic kidney disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn