Share:
Share this content in WeChat
X
Review
Advances in imaging studies of skeletal muscle microvascular lesions in diabetes mellitus with peripheral artery disease
YANG Qi  ZHA Yunfei 

Cite this article as: Yang Q, Zha YF. Advances in imaging studies of skeletal muscle microvascular lesions in diabetes mellitus with peripheral artery disease. Chin J Magn Reson Imaging, 2020, 11(5): 390-393. DOI:10.12015/issn.1674-8034.2020.05.017.


[Abstract] Diabetes mellitus with peripheral artery disease has a high risk of amputation and death at the end of its course. Critical limb ischemia is the most advanced stage of peripheral artery disease of diabetes mellitus. The formation of new microvessels and the recovery of blood flow in skeletal muscle are reduced, the station of peripheral limb ischemic muscle is worse. Imaging technology has become a new diagnostic method for clinical evaluation of skeletal muscle microvascular lesions in diabetic peripheral artery disease. This article is to review the recent imaging study of skeletal muscle microvascular lesions in peripheral artery disease of diabetes mellitus.
[Keywords] peripheral artery disease;diabetes mellitus;skeletal muscle;microvascular;diagnostic imaging

YANG Qi Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430000

ZHA Yunfei* Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430000

*Corresponding to: Zha YF, E-mail: zhayunfei999@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  The National Natural Science Foundation of China No. 81871332
Received  2019-11-08
Accepted  2020-02-12
DOI: 10.12015/issn.1674-8034.2020.05.017
Cite this article as: Yang Q, Zha YF. Advances in imaging studies of skeletal muscle microvascular lesions in diabetes mellitus with peripheral artery disease. Chin J Magn Reson Imaging, 2020, 11(5): 390-393. DOI:10.12015/issn.1674-8034.2020.05.017.

[1]
Shammas AN, Jeon-Slaughter H, Tsai S, et al. Major limb outcomes following lower extremity endovascular revascularization in patients with and without diabetes mellitus. J Endovasc Ther, 2017, 24(3): 376-382.
[2]
Lopez-Diez R, Shen X, Daffu G, et al. Ager deletion enhances ischemic muscle inflammation, angiogenesis, and blood flow recovery in diabetic mice. Arterioscler Thromb Vasc Biol, 2017, 37(8): 1536-1547.
[3]
Li X, Gan K, Song G, et al. VEGF gene transfected umbilical cord mesenchymal stem cells transplantation improve the lower limb vascular lesions of diabetic rats. J Diabetes Complications, 2015, 29(7): 872-881.
[4]
Ahmed M, de Winther M, Van den Bossche J. Epigenetic mechanisms of macrophage activation in type 2 diabetes. Immunobiology, 2017, 222(10): 937-943.
[5]
Babu M, Durga D T, Makinen P, et al. Differential promoter methylation of macrophage genes is associated with impaired vascular growth in ischemic muscles of hyperlipidemic and Type 2 diabetic mice: genome-wide promoter methylation study. Circ Res, 2015, 117(3): 289-299.
[6]
Ariyanti AD, Sisjayawan J, Zhang J, et al. Elevating VEGF-A and PDGF-BB secretion by salidroside enhances neoangiogenesis in diabetic hind-limb ischemia. Oncotarget, 2017, 8(57): 97187-97205.
[7]
Xiao L, Yan K, Yang Y, et al. Anti-vascular endothelial growth factor treatment induces blood flow recovery through vascular remodeling in high-fat diet induced diabetic mice. Microvasc Res, 2016, 105: 70-76.
[8]
Ferland-Mccollough D, Slater S, Richard J, et al. Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther, 2017,171: 30-42.
[9]
Kozakowska M, Kotlinowski J, Grochot-Przeczek A, et al. Myoblast-conditioned media improve regeneration and revascularization of ischemic muscles in diabetic mice. Stem Cell Res Ther, 2015, 6(1): 61.
[10]
Howangyin KY, Silvestre JS. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction. Arterioscler Thromb Vasc Biol, 2014, 34(6): 1126-1135.
[11]
Mathew RC, Kramer CM. Recent advances in magnetic resonance imaging for peripheral artery disease. Vasc Med, 2018, 23(2): 143-152.
[12]
Suo S, Zhang L, Tang H, et al. Evaluation of skeletal muscle microvascular perfusion of lower extremities by cardiovascular magnetic resonance arterial spin labeling, blood oxygenation level-dependent, and intravoxel incoherent motion techniques. J Cardiovasc Magn Reson, 2018, 20(1): 18.
[13]
Zaccagnini G, Palmisano A, Canu T, et al. Magnetic resonance imaging allows the evaluation of tissue damage and regeneration in a mouse model of critical limb ischemia. PLoS One, 2015, 10(11): e142111.
[14]
Delli PS, Madonna R, Caulo M, et al. MR angiography, MR imaging and proton MR spectroscopy in-vivo assessment of skeletal muscle ischemia in diabetic rats. PLoS One, 2012, 7(9): e44752.
[15]
Liu Y, Mei X, Li J, et al. Mitochondrial function assessed by 31P MRS and BOLD MRI in non-obese type 2 diabetic rats. Physiol Rep, 2016, 4(15): e12890.
[16]
Partovi S, Karimi S, Jacobi B, et al. Clinical implications of skeletal muscle blood-oxygenation-level-dependent (BOLD) MRI. MAGMA, 2012, 25(4): 251-261.
[17]
Ledermann HP, Schulte AC, Heidecker HG, et al. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation, 2006, 113(25): 2929-2935.
[18]
Zheng J, Hasting MK, Zhang X, et al. A pilot study of regional perfusion and oxygenation in calf muscles of individuals with diabetes with a noninvasive measure. J Vasc Surg, 2014, 59(2): 419-426.
[19]
Zheng J, Muccigrosso D, Zhang X, et al. Oximetric angiosome imaging in diabetic feet. J Magn Reson Imaging, 2016, 44(4): 940-946.
[20]
Edalati M, Hastings MK, Muccigrosso D, et al. Intravenous contrast-free standardized exercise perfusion imaging in diabetic feet with ulcers. J Magn Reson Imaging, 2018, 50(2): 474-480.
[21]
Schewzow K, Fiedler GB, Meyerspeer M, et al. Dynamic ASL and T2- weighted MRI in exercising calf muscle at 7 T: a feasibility study. Magn Reson Med, 2015, 73(3): 1190-1195.
[22]
Kashiwagi Y, Nodaira M, Amitani M, et al. Assessment of peripheral tissue perfusion disorder in streptozotocin-induced diabetic rats using dynamic contrast-enhanced MRI. Magn Reson Imaging, 2012, 30(2): 254-260.
[23]
Loerakker S, Oomens CW, Manders E, et al. Ischemia-reperfusion injury in rat skeletal muscle assessed with T2-weighted and dynamic contrast-enhanced MRI. Magn Reson Med, 2011, 66(2): 528-537.
[24]
田浩,赵金丽,陈小华,等.动态增强磁共振评价糖尿病下肢血管狭窄经皮血管腔内成形术后毛细血管内皮功能变化的研究.介入放射学杂志, 2014(1): 13-17.
[25]
Wang J, Li Y H, Li M H, et al. Use of dynamic contrast-enhanced magnetic resonance imaging to evaluate the microcirculation of lower extremity muscles in patients with Type 2 diabetes. Diabet Med, 2011, 28(5): 618-621.
[26]
Alvelo JL, Papademetris X, Mena-Hurtado C, et al. Radiotracer imaging allows for noninvasive detection and quantification of abnormalities in angiosome foot perfusion in diabetic patients with critical limb ischemia and nonhealing wounds. Circ Cardiovasc Imaging, 2018, 11(5): e6932.
[27]
Quaia E,李宁.利用对比增强超声评价组织灌注.国际医学放射学杂志, 2011, 34(3): 297.
[28]
Lindner JR, Womack L, Barrett EJ, et al. Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity. JACC Cardiovasc Imaging, 2008, 1(3): 343-350.
[29]
Womack L, Peters D, Barrett EJ, et al. Abnormal skeletal muscle capillary recruitment during exercise in patients with type 2 diabetes mellitus and microvascular complications. J Am Coll Cardiol, 2009, 53(23): 2175-2183.
[30]
Nguyen T, Davidson BP. Contrast enhanced ultrasound perfusion imaging in skeletal muscle. J Cardiovasc Imaging, 2019, 27(3): 163-177.

PREV The research progress of radiomics in ovarian tumors
NEXT Research progress of medical image texture analysis in musculoskeletal diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn