Share:
Share this content in WeChat
X
Review
Research progress of medical image texture analysis in musculoskeletal diseases
ZHONG Yi  LIU Xin  XIAO Yundan  YANG Haitao 

Cite this article as: Zhong Y, Liu X, Xiao YD, et al. Research progress of medical image texture analysis in musculoskeletal diseases. Chin J Magn Reson Imaging, 2020, 11(5): 394-397. DOI:10.12015/issn.1674-8034.2020.05.018.


[Abstract] In recent years, texture analysis and radiomics based on medical image have been widely applied in diagnosis and differential diagnosis, curative effect judgment and prognosis predictio in head, neck, chest, abdomen and pelvic diseases, but still rarely used in musculoskeletal system. This paper summarizes the common methods, parameters and processes of texture analysis, and makes a survey of the research status of musculoskeletal system disease such as bone and soft tissue tumors, osteoporosis and related fracture, osteoarthritis and other diseases.
[Keywords] texture analysis;musculoskeletal system;review

ZHONG Yi Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

LIU Xin Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

XIAO Yundan Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

YANG Haitao* Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

*Corresponding to: Yang HT, E-mail: frankyang119@126.com

Conflicts of interest   None.

Received  2019-08-23
Accepted  2020-03-25
DOI: 10.12015/issn.1674-8034.2020.05.018
Cite this article as: Zhong Y, Liu X, Xiao YD, et al. Research progress of medical image texture analysis in musculoskeletal diseases. Chin J Magn Reson Imaging, 2020, 11(5): 394-397. DOI:10.12015/issn.1674-8034.2020.05.018.

[1]
刘菲涤,杜芳,程海泉.基于MRI图像纹理分析的应用及研究进展.中国医学计算机成像杂志, 2018, 24(5):62-65.
[2]
熊飞,谭惠斌,王翅鹏,等.磁共振图像纹理分析在脑肿瘤中的研究进展.华南国防医学杂志, 2018, 32(8): 90-93.
[3]
刘超,鲁际.影像组学的兴起及其应用进展.海南医学, 2018, 29(15): 98-100.
[4]
马军超,卢彬平,许晓通,等.图像纹理分析对CT首诊发现骨内硬化结节良恶性的鉴别价值.临床放射学杂志, 2018, 37(11): 1897-1900.
[5]
Fritz B, Müller DA, Sutter R, et al. Magnetic resonance imaging-based grading of cartilaginous bone tumors: added value of quantitative texture analysis. Invest Radiol, 2018, 53(11): 663-672.
[6]
Lisson CS, Lisson CG, Flosdorf K, et al. Diangnostic value of MRI- basde 3D texture analysis for tissue characterisation and discrimination of low-grade chondrosarcoma from enchondroma:a pilot study. Eur radiol, 2018, 28(2): 468-477.
[7]
Reischauer C, Patzwahl, R, Koh DM, et al. Texture analysis of apparent diffusion coefficient maps for treatment response assessment in prostate cancer bone metastases: a pilot study. Eur J Radiol, 2018, 101: 184-190.
[8]
Thornhill RE, Golfam M, Sheikh A, et al. Differentiation of lipoma from liposarcoma on mri using texture and shape analysis. Academic Radiology, 2014, 21(9): 1185-1194.
[9]
Kim HS, Kim JH, Yoon YC, et al. Tumor spatial heterogeneity in myxoid-containing soft tissue using texture analysis of diffusion-weighted MRI. PLoS One, 2017, 12(7): e0181339.
[10]
Yin P, Mao N, Zhao C, et al. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Eur J Radiol, 2019, 49(3): 752-759.
[11]
Yin P, Mao N, Zhao C, et al. A triple-classification radiomics model for the differentiation of primary chordoma, giant cell tumor, and metastatic tumor of sacrum based on T2-weighted and contrast-enhanced T1- weighted MRI. Eur Radiol, 2019, 29(4): 1841-1847.
[12]
Mookiah MRK, Rohrmeier A, Dieckmeyer M, et al. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis. Osteoporos Int, 2018, 29(4): 825-835.
[13]
Muehlematter UJ, Mannil M, Becker AS, et al. Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur Radiol, 2019, 29(5): 2207-2217.
[14]
Thevenot J, Hirvasniemi J, Pulkkinen P, et al. Assessment of risk of femoral neck fracture with radiographic texture parameters: a retrospective study. Radiology, 2014, 272(1): 184-191.
[15]
Areeckal A, Jayasheelan N, Kamath J, et al. Early diagnosis of osteoporosis using radiogrammetry and texture analysis from hand and wrist radiographs in Indian population. Osteoporos Int, 2018, 29(3): 665-673.
[16]
Areeckal A, Kamath J, Zawadynski S, et al. Combined radiogrammetry and texture analysis for early diagnosis of osteoporosis using indian and swiss data. Comput Med Imaging Graph, 2018, 68: 25-39.
[17]
Nardone V, Tini P, Croci S, et al. 3D bone texture analysis as a potential predictor of radiation induced insufficiency fractures. Quant Imaging Med Surg, 2018, 8(1): 14-24.
[18]
Valentinitsch A, Trebeschi S, Kaesmacher J, et al. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int, 2019, 30(6): 1275-1285.
[19]
Blumenkrantz G, Stahl R, Carballido-Gamio J, et al. The feasibility of characterizing the spatial distribution of cartilage T2 using texture analysis. Osteoarthritis Cartilage, 2008, 16(5): 584-590.
[20]
Mackay JW, Murray PJ, Kasmai B, et al. MRI texture analysis of subchondral bone at the tibial plateau. Eur Radiol, 2015, 26(9): 1-12.
[21]
Mackay JW, Murray PJ, Kasmai B, et al. Subchondral bone in osteoarthritis: association between MRI texture analysis and histomorphometry. Osteoarthritis Cartilage, 2017, 25(5): 700-707.
[22]
Hirvasniemi J, Thevenot J, Immonen V, et al. Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis. Osteoarthritis Cartilage, 2014, 22(10): 1724-1731.
[23]
Hirvasniemi J, Gielis WP, Arbabi S, et al. Bone texture analysis for prediction of incident radiographic hip osteoarthritis using machine learning: data from the cohort hip and cohort knee (CHECK) study. Osteoarthritis Cartilage, 2019, 27(6): 906-914.
[24]
Janvier T, Jennane R, Valery A, et al. Subchondral tibial bone texture analysis predicts knee osteoarthritis progression: data from the osteoarthritis initiative. Osteoarthritis Cartilage, 2017, 25(2): 259-266.
[25]
Janvier T, Jennane R, Toumi H, et al. Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage, 2018, 26(6): e5.
[26]
Heilmeier U, Wamba JM, Joseph GB, et al. Baseline knee joint effusion and medial femoral bone marrow edema,in addition to MRI-based T2 relaxation time and texture measurements of knee cartilage, can help predict incident total knee arthroplasty 4-7 years later: data from the Osteoarthritis Initiative. Skeletal Radiol, 2019, 48(1): 89-101.
[27]
Hofmann F, Neumann J, Heilmeier U, et al. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative. Skeletal Radiol, 2018, 47(1): 93-106.
[28]
Tabari A, Torriani M, Miller K, et al. Anorexia nervosa: analysis of trabecular texture with CT. Radiology, 2017, 283(1): 178-185.
[29]
Kang Y, Lee G, Lee J, et al. Texture analysis of torn rotator cuff on preoperative magnetic resonance arthrography as a predictor of postoperative tendon status. Korean J Radiol, 2017, 18(4): 691-698.
[30]
Fang T, Kouchi H, Avinash RK, et al. Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion. Abdominal Imaging, 2015, 40(6): 1705-1712.
[31]
Mannil M, Burgstaller J, Thanabalasingam A, et al. Texture analysis of paraspinal musculature in MRI of the lumbar spine: analysis of the lumbar stenosis outcome study (LSOS) data. Skeletal Radiol, 2018, 47(7): 947-954.
[32]
Yi J, Lee Y, Kim S, et al. Response evaluation of giant-cell tumor of bone treated by denosumab: Histogram and texture analysis of CT images. J Orthop Sci, 2018, 23(3): 570-577.

PREV Advances in imaging studies of skeletal muscle microvascular lesions in diabetes mellitus with peripheral artery disease
NEXT Research progress of magnetic resonance T2-mapping in body malignant tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn