Share:
Share this content in WeChat
X
Investigation Research
Analysis of MRI-related adverse event reports
ZHENG Chen  YANG Pengfei 

Cite this article as: Zheng C, Yang PF. Analysis of MRI-related adverse event reports. Chin J Magn Reson Imaging, 2020, 11(6): 438-443. DOI:10.12015/issn.1674-8034.2020.06.008.


[Abstract] Objective: To analyze the types and causes of adverse events and recall data through MRI 10-years adverse events in US combined with active recall data in China.Materials and Methods: Based on SUS database, collected 1548 MRI instruments, MRI dedicated coils, MR spectroscopy imaging and PET/MRI adverse events from January 1, 2008 to December 31, 2017; Based on the website of National Medical Products Administration, included 30 MRI, PET/MRI incidents reported to China from January 1, 2011 to December 31, 2019.Results: The type and number of MRI adverse events of fruit 1548 were 906(58.5%) of overheating injury, 170(11.0%) of mechanical damage, 133(8.6%) of ferromagnetic projection damage, 109(7.0%) of confounding events, 89(5.7%) of image quality, 86(5.6%) of noise, 55(43.6%) of unknown cause, 0(0%) of peripheral nerve stimulation; the type and number of MRI overheating injury-adverse events of fruit 906 were 348(38.4%) of unknown cause, 257(28.4%) of contact with a conductive object, 147(16.2%) of skin-to-skin contact, 97(10.7%)of bore contact, 57(6.3%) of not RF related events; the types and number of active MRI recall events in China were helium leakage 7(23.3%), overheating damage 6(20.0%), image quality 6(20.0%), mechanical damage 5(16.7%), magnet loss 3(10.0%), label 3(10.0%).Conclusions: The types and causes of adverse events and recall data are of great value to China manufacturers, clinical institutions and regulators in controlling MRI-related risks.
[Keywords] magnetic resonance imaging;adverse events;recalls

ZHENG Chen* Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China

YANG Pengfei Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China

*Corresponding to: Zheng C, E-mail: zhengchen@cmde.org.cn

Conflicts of interest   None.

Received  2020-02-08
Accepted  2020-03-13
DOI: 10.12015/issn.1674-8034.2020.06.008
Cite this article as: Zheng C, Yang PF. Analysis of MRI-related adverse event reports. Chin J Magn Reson Imaging, 2020, 11(6): 438-443. DOI:10.12015/issn.1674-8034.2020.06.008.

[1]
赵喜平.磁共振成像.北京:科学出版社, 2004.
[2]
陆家辉,罗士香,卞蓉蓉,等.浅谈医用磁共振成像系统的故障与不良事件.药学与临床研究, 2016, 24(2): 178-181. DOI: 10.13664/j.cnki.pcr.2016.02.024.
[3]
Delfino JG, Krainak DM, Stephanie AF, et al. MRI-related FDA adverse event reports: A 10-year review. Med Phys, 2019, 46 (12): 5562-5571. DOI: 10.1002/mp.13768.
[4]
国家食品药品监督管理总局.关于发布医用磁共振成像系统等4个医疗器械产品注册技术审查指导原则的通告(第2号). (2014-03-13)[2020-02-04]. http://samr.cfda.gov.cn/WS01/CL1294/97701.html.
[5]
何伟,王传兵,高虹,等.金属植入物在磁共振检查中的致升温效应及安全性分析.中国医疗设备, 2019, 34(6): 49-52. DOI: 10.3969/j.issn.1674-1633.2019.06.013.
[6]
王传兵,张玲,李大鹏.金属植入物对1.5 T磁共振扫描热效应的安全性影响.中国医疗设备, 2015, 30(8): 27-29. DOI: 10.3969/j.issn.1674-1633.2015.08.008.
[7]
陈克敏,潘自来,姚侃敏,等.磁共振检查以及体内植入物的安全性.中国医学计算机成像杂志, 2014, 20: 430-434. DOI: 10.19627/j.cnki.cn31-1700/th.2014.05.011.
[8]
武杰,袁航英,严峻,等.医用核磁共振成像设备的风险因素分析与管理.中国医学物理学杂志, 2014, 31(3): 4918-4919, 4928. DOI: 10.3969/j.issn.1005-202X.2014.03.016.
[9]
国家药品监督管理局.医疗器械不良事件监测和再评价管理办法. (2018-08-13) [2020-03-06]. http://www.nmpa.gov.cn/WS04/CL2077/330071.html.
[10]
庄亚运,辛学刚.利用高介电材料提高胎儿磁共振射频安全性理论研究.科学技术与工程, 2015, 15(18): 71-77.
[11]
Medical electrical equipment: part 2-33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis: IEC 60601-2-33, Edition 3.0.
[12]
FDA. Magnetic resonance (MR) coil-performance criteria for safety and performance based pathway. (2019-12-09)[2020-02-04]. https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/draft-medical-device-guidance.
[13]
倪萍,陈自谦,张鲁闽,等.高场磁共振应用安全和质量控制的规范化管理.中国医疗设备, 2011, 26(2): 1-4.
[15]
YY/T0482-2010, Magnetic resonance equipment for medical imaging part 1: Determination of essential image quality parameters.
[16]
刘龙,储呈晨,王龙辰,等.国内医用磁共振声学噪声测试分析.中国医疗设备, 2019, 34(8): 19-22, 27. DOI: 10.3969/j.issn.1674-1633.2019.08.003.
[17]
Kim SJ, Kim KA. Safety issues and updates under MR environments. Eur J Radiol, 2017, 89: 7-13.
[18]
刘炯.超导磁体的安全分析与检验建议.中国医疗器械杂志, 2013, 37(1): 51-56.
[19]
汤福南,许翔,张可,等.基于物联网和人工智能的核磁共振机房监测系统设计.中国医疗设备, 2019, 34(11): 101-104, 115. DOI: 10.3969/j.issn.1674-1633.2019.11.024.
[20]
余慧娴.研发MRI无氦超导磁体的可行性及技术要点.中国医疗器械杂志, 2018, 42(5): 345-349. DOI: 10.3969/j.issn.1671-7104.2018.05.010.
[22]
食品药品监督管理总局.医疗器械说明书和标签管理规定. (2018-08-03)[2020-03-06]. http://samr.cfda.gov.cn/WS01/CL1101/103758.html.
[23]
国家食品药品监管管理总局.药品不良反应信息通报(第13期)警惕含钆磁共振造影剂引起的肾源性系统纤维化. (2007-10-29)[2020-02-04]. http://www.nmpa.gov.cn/WS04/CL2155/318828.html.
[24]
王广志.与共和国共成长——我国医学影像装备研发的70年发展.中国医学影像学杂志, 2019, 27(10): 719-720.

PREV Diffusion weighted imaging of head based on GRADE-DWI sequence
NEXT Analysis of MRI and clinical characteristics of cerebral infarction in neonatal period
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn