Share:
Share this content in WeChat
X
Review
Research progress of the interhemispheric structural and functional connections after stroke
XIA Yumei  LIANG Zhijian 

Cite this article as: Xia YM, Liang ZJ. Research progress of the interhemispheric structural and functional connections after stroke. Chin J Magn Reson Imaging, 2020, 11(6): 455-458. DOI:10.12015/issn.1674-8034.2020.06.014.


[Abstract] The network of bilateral cerebral hemispheres is coordinated and integrated through interhemispheric structural and functional connections. After the stroke, the interhemispheric structural and functional connections undergo extensive changes. These changes are closely related to neurological function deficit after stroke and its subsequent recovery. The evaluation of the changes in the interhemispheric structural and functional connections may be helpful in monitoring the recovery of neurological function. Regulating interhemispheric functional connectivity to promote the recovery of neurological function after stroke is also a new rehabilitation method that is currently being explored. Diffusion tensor imaging (DTI) and resting state functional magnetic resonance imaging (rs-fMRI) are commonly used to evaluate structural and functional connectivity. In this review, the authors briefly introduce the background of each method and review the current research progress in evaluating the changes in the interhemispheric structure and functional connections after stroke using DTI and rs-fMRI.
[Keywords] stroke;structural connection;function connection;diffusion tensor imaging;resting state functional magnetic resonance imaging

XIA Yumei Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China

LIANG Zhijian* Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China

*Corresponding to: Liang ZJ, E-mail: lzj200415@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Key Research and Development Plan No. 2018YFC1311305
Received  2020-03-03
Accepted  2020-04-12
DOI: 10.12015/issn.1674-8034.2020.06.014
Cite this article as: Xia YM, Liang ZJ. Research progress of the interhemispheric structural and functional connections after stroke. Chin J Magn Reson Imaging, 2020, 11(6): 455-458. DOI:10.12015/issn.1674-8034.2020.06.014.

[1]
Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circul Res, 2017, 120(3): 439-448. DOI: 10.1161/CIRCRESAHA.116.308413.
[2]
Thiel A, Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke, 2015, 46(1): 296-301. DOI: 10.1161/STROKEAHA.114.006307.
[3]
Guggisberg AG, Koch PJ, Hummel FC, et al. Brain networks and their relevance for stroke rehabilitation. Clin Neurophysiol, 2019, 130(7): 1098-1124. DOI: 10.1016/j.clinph.2019.04.004.
[4]
Gupta RK, Saksena S, Hasan KM, et al. Focal wallerian degeneration of the corpus callosum in large middle cerebral artery stroke: serial diffusion tensor imaging. J Magne Resonance Imaging, 2006, 24(3): 549-555. DOI: 10.1002/jmri.20677.
[5]
Wang LE, Tittgemeyer M, Imperati D, et al. Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Human Brain Mapping, 2012, 33(12): 2941-2956. DOI: 10.1002/hbm.21417.
[6]
Chen JL, Schlaug G. Resting state interhemispheric motor connectivity and white matter integrity correlate with motor impairment in chronic stroke. Front Neurol, 2013, 7(4): 178. DOI: 10.3389/fneur.2013.00178.
[7]
Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magnetic Resonance. Series B, 1994, 103(3): 247-254.
[8]
Gray L, MacFall J. Overview of diffusion imaging. Magne Res Imaging Clin North America, 1998, 6(1): 125-138.
[9]
王建利,谢敬霞.成人脑组织水分子扩散的各向异性.中华放射学杂志, 1999, 33(10): 26-30.
[10]
Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 2006, 51(5): 527- 539. DOI: 10.1016/j.neuron.2006.08.012.
[11]
Jang SH. A review of diffusion tensor imaging studies on motor recovery mechanisms in stroke patients. Neuro Rehabilitation, 2011, 28(4): 345- 352. DOI: 10.3233/NRE-2011-0662.
[12]
Koch P, Schulz R, Hummel FC. Structural connectivity analyses in motor recovery research after stroke. Annals of Clin Translational Neurology, 2016, 3(3): 233-244. DOI: 10.1002/acn3.278.
[13]
Radlinska BA, Blunk Y, Leppert IR, et al. Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cerebral Blood Flow Metabolism, 2012, 32(8): 1515-1524. DOI: 10.1038/jcbfm.2012.37.
[14]
Li Y, Wu P, Liang F, et al. The microstructural status of the corpus callosum is associated with the degree of motor function and neurological deficit in stroke patients. PLoS One, 2015, 10(4): e0122615. DOI: 10.1371/journal.pone.0122615.
[15]
Liu J, Qin W, Zhang J, et al. Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke, 2015, 46(4): 1045-1051. DOI: 10.1161/STROKEAHA.114.007044.
[16]
Johansen-Berg H, Della-Maggiore V, Behrens TE, et al. Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. NeuroImage, 2007, 36(Suppl 2): 16-21. DOI: 10.1016/j.neuroimage.2007.03.041.
[17]
Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magne Res in Med, 1995, 34(4): 537-541. DOI: 10.1002/mrm.1910340409.
[18]
Lv H, Wang Z, Tong E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
[19]
Smith SM, Vidaurre D, Beckmann CF, et al. Functional connectomics from resting-state fMRI. Trends in Cognitive Sci, 2013, 17(12): 666- 682. DOI: 10.1016/j.tics.2013.09.016.
[20]
Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol, 2013, 34(10): 1866-1872. DOI: 10.3174/ajnr.A3263.
[21]
Carter AR, Astafiev SV, Lang CE, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Annals of Neurol, 2010, 67(3): 365-375. DOI: 10.1002/ana.21905.
[22]
van Meer MP, van der Marel K, Wang K, et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neuroscience, 2010, 30(11): 3964-3972. DOI: 10.1523/JNEUROSCI.5709-09.2010.
[23]
Wang L, Yu C, Chen H, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain, 2010, 133(Pt 4): 1224-1238. DOI: 10.1093/brain/awq043.
[24]
Park CH, Chang WH, Ohn SH, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke, 2011, 42(5): 1357-1362. DOI: 10.1161/strokeaha.110.596155.
[25]
Xu H, Qin W, Chen H, et al. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke. PLoS One, 2014, 9(1): e84729. DOI: 10.1371/journal.pone.0084729.
[26]
Lin LY, Ramsey L, Metcalf NV, et al. Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity. PLoS One, 2018, 13(8): e0202504. DOI: 10.1371/journal.pone.0202504.
[27]
Lu Q, Huang G, Chen L, et al. Structural and functional reorganization following unilateral internal capsule infarction contribute to neurological function recovery. Neuroradiology, 2019, 61(10): 1181-1190. DOI: 10.1007/s00234-019-02278-x.
[28]
Golestani AM, Tymchuk S, Demchuk A, et al. Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabilitation Neural Repair, 2013, 27(2): 153-163. DOI: 10.1177/1545968312457827.
[29]
van Meer MP, Otte WM, van der Marel K, et al. Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neuroscience, 2012, 32(13): 4495-4507. DOI: 10.1523/JNEUROSCI.3662-11.2012.
[30]
Urbin MA, Hong X, Lang CE, et al. Resting-state functional connectivity and its association with multiple domains of upper-extremity function in chronic stroke. Neurorehabilitation Neural Repair, 2014, 28(8): 761-769. DOI: 10.1177/1545968314522349.
[31]
Vahdat S, Darainy M, Milner TE, et al. Functionally specific changes in resting-state sensorimotor networks after motor learning. J Neuroscience, 2011, 31(47): 16907-16915. DOI: 10.1523/jneurosci.2737-11.2011.
[32]
Guerra-Carrillo B, Mackey AP, Bunge SA. Resting-state fMRI: a window into human brain plasticity. Neuroscientist, 2014, 20(5): 522- 533. DOI: 10.1177/1073858414524442.
[33]
Fan YT, Wu CY, Liu HL, et al. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation. Front in Human Neuroscience, 2015, 10(9): 546. DOI: 10.3389/fnhum.2015.00546.
[34]
Zhang Y, Liu H, Wang L, et al. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study. Neuroradiology, 2016, 58(5): 503-511. DOI: 10.1007/s00234-016-1646-5.
[35]
Lefebvre S, Dricot L, Laloux P, et al. Increased functional connectivity one week after motor learning and tDCS in stroke patients. Neuroscience, 2017, 1(340): 424-435. DOI: 10.1016/j.neuroscience.2016.10.066.
[36]
Li Y, Wang Y, Liao C, et al. Longitudinal brain functional connectivity changes of the cortical motor-related network in subcortical stroke patients with acupuncture treatment. Neural Plast, 2017, 2017: 5816263. DOI: 10.1155/2017/5816263.
[37]
Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure & Function, 2009, 213(6): 525- 533. DOI: 10.1007/s00429-009-0208-6.
[38]
Honey CJ, Sporns O, Cammoun L, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A, 2009, 106(6): 2035-2040. DOI: 10.1073/pnas.0811168106.

PREV Littoral cell angioma of spleen on MR: One case report
NEXT Research progress of MR vessel wall imaging of responsible blood vessels of ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn