Share:
Share this content in WeChat
X
Review
The progress of functional magnetic resonance imaging and Ki-67 labeling index in the assessment of malignancy in gliomas
XIE Jiapei  XIAO Liang 

Cite this article as: Xie JP, Xiao L. The progress of functional magnetic resonance imaging and Ki-67 labeling index in the assessment of malignancy in gliomas. Chin J Magn Reson Imaging, 2020, 11(6): 462-465. DOI:10.12015/issn.1674-8034.2020.06.016.


[Abstract] Brain gliomas are the most common intracranial malignant tumor, the higher the degree of malignancy, the higher the grade, the worse the prognosis. The assessment of brain gliomas malignancy is important to predict tumor grade, tumor behavior and prognosis. Ki- 67 is a protein reflecting cellular proliferation and malignancy; higher Ki-67 labeling index correspond to higher proliferation and greater malignancy. However, the assessment of Ki- 67 labeling index requires biopsy or surgical removal, a noninvasive method to predict Ki-67 labeling index would be of great importance for the assessment of proliferative potential and malignancy of brain glioma. Using noninvasive magnetic resonance imaging techniques to predict the Ki-67 labeling index is indispensable for the assessment of tumor malignancy. In the paper, we review the contribution of functional magnetic resonance and Ki-67 labeling index for the assessment of the gliomas malignancy.
[Keywords] brain glioma;neoplasm grading;Ki-67 labeling index;functional magnetic resonance imaging;malignancy

XIE Jiapei The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, China

XIAO Liang* The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, China

*Corresponding to: Xiao L, E-mail: xiaoliang_cmu@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No. 81471763
Received  2020-02-28
Accepted  2020-04-12
DOI: 10.12015/issn.1674-8034.2020.06.016
Cite this article as: Xie JP, Xiao L. The progress of functional magnetic resonance imaging and Ki-67 labeling index in the assessment of malignancy in gliomas. Chin J Magn Reson Imaging, 2020, 11(6): 462-465. DOI:10.12015/issn.1674-8034.2020.06.016.

[1]
Jain KK, Sahoo P, Tyagi R, et al. Prospective glioma grading using single-dose dynamic contrast-enhanced perfusion MRI. Clin Radiol, 2015, 70(10): 1128-1135.
[2]
Zhang J, Chen XW, Chen D, et al. Grading and proliferation assessment of diffuse astrocytic tumors with monoexponential, biexponential, and stretched-exponential diffusion-weighted imaging and diffusion kurtosis imaging. Eur J Radiol, 2018, 109(2018): 188-195.
[3]
Server A, Kulle B, Gadmar OB, et al. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol, 2011, 80(2): 462-470.
[4]
Skjulsvik AJ, Mørk JN, Torp MO, et al. Ki-67/MIB-1 immunostaining in a cohort of human gliomas. Int J Clin Exp Pathol, 2014, 7(12): 8905-8910.
[5]
Ryoo I, Choi SH, Kim JH, et al. Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles. PLoS One, 2013, 8(8): 1-9.
[6]
Richards-Taylor S, Ewings SM, Jaynes E, et al. The assessment of Ki-67 as a prognostic marker in neuroendocrine tumours: a systematic review and meta-analysis. J Clin Pathol, 2016, 69(7): 612-618.
[7]
Su C, Liu C, Zhao L, et al. Amide proton transfer imaging allows detection of glioma grades and tumor proliferation: Comparison with Ki-67 expression and proton MR spectroscopy imaging. AJNR Am J Neuroradiol, 2017, 38(9): 1702-1709.
[8]
Bai Y, Lin YS, Zhang W, et al. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget, 2017, 8(4): 5834-5842.
[9]
Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging, 1999, 9(1): 53-60.
[10]
Brunberg JA, Chenevert TL, McKeever PE, et al. In vivo MR determination of water diffusion coefficients and diffusion anisotropy: Correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol, 1995, 16(2): 361-371. [11] Surov A, Meyer HJ, Wienke A. Associations between apparent diffusion coefficient (ADC) and Ki67 in different tumors: a meta-analysis. Part 1: ADCmean. Oncotarget, 2017, 8(43): 75434-75444.
[12]
Zeng Q, Dong F, Shi FN, et al. Apparent diffusion coefficient maps obtained from high b value diffusion-weighted imaging in the preoperative evaluation of gliomas at 3.0 T: comparison with standard b value diffusion-weighted imaging. Eur Radiol, 2017, 27(12): 5309-5315.
[13]
Wang S, Meng M, Zhang X, et al. Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest. Oncol Lett, 2018, 15(5): 7297-7304.
[14]
Bihan DL, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
[15]
Togao O, Hiwatashi A, Yamashita K, et al. Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging. Neuro Oncol, 2016, 18(1): 132-141.
[16]
Federau C, Meuli R, O' Brien K, et al. Perfusion measurement in brain gliomas with intravoxel incoherent motion MRI. AJNR Am J Neuroradiol, 2014, 35(2): 256-262.
[17]
Bisdas S, Koh TS, Roder C, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology, 2013, 55(10): 1189-1196.
[18]
Zhang L, Yang LQ, Gong MF, et al. Value of intravoxel incoherent motion diffusion-weighted MR imaging in preoperative glioma grading. J Third Milli Med Univ, 2016, 38(22): 2407-2412.
[19]
Qu Y, Jiang J, Quan GN. Application of artery spin labeling and intravoxel incoherent motion MR study in the grading of gliomas. Chin J Magn Reson Imaging, 2017, 8(4): 243-247.
[20]
Wang K, Ha TT, Chen XZ, et al. A combined diffusion tensor imaging and Ki-67 labeling index study for evaluating the extent of tumor infiltration using the F98 rat glioma model. J Neurooncol, 2018, 137(2):259-268.
[21]
Fudaba H, Shimomura T, Abe T, et al. Comparison of multiple parameters obtained on 3T pulsed arterial spin-labeling, diffusion tensor imaging, and MRS and the Ki-67 labeling index in evaluating glioma grading. AJNR Am J Neuroradiol, 2014, 35(11): 2091-2098.
[22]
Zhao J, Wang YL, Li XB, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status. J Neurooncol, 2019, 141(1): 195-203.
[23]
Zikou AK, Alexiou GA, Kosta P, et al. Diffusion tensor and dynamic susceptibility contrast MRI in glioblastoma. Clin Neurol Neurosurg, 2012, 114(6): 607-612.
[24]
Alexiou GA, Zikou A, Tsiouris S, et al. Correlation of diffusion tensor, dynamic susceptibility contrast MRI and (99m)Tc-Tetrofosmin brain SPECT with tumour grade and Ki-67 immunohistochemistry in glioma. Clin Neurol Neurosurg, 2014, 116(2014): 41-45.
[25]
Li F, Shi WQ, Wang D, et al. Evaluation of histopathological changes in the microstructure at the center and periphery of glioma tumors using diffusional kurtosis imaging. Clin Neurol Neurosurg, 2016, 151(2016): 120-127.
[26]
Zeng Q, Jiang B, Shi F, et al. 3D pseudocontinuous arterial spin-labeling MR imaging in the preoperative evaluation of gliomas. AJNR Am J Neuroradiol, 2017, 38(10): 1876-1883.
[27]
Roy B, Awasthi R, Bindal A, et al. Comparative evaluation of 3-Dimensional pseudocontinuous arterial spin labeling with dynamic contrast-enhanced perfusion magnetic resonance imaging in grading of human glioma. J Comput Assist Tomogr, 2013, 37(3): 321-326.
[28]
Falk A, Fahlstrom M, Rostrup E, et al. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging: a histogram analysis approach. Neuroradiology, 2014, 56(12): 1031-1038.
[29]
Roy B, Gupta RK, Maudsley AA, et al. Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology, 2013, 55(5): 603-613.
[30]
Jia ZZ, Jiang JS, Shen DD, et al. Quantitative assessment of tumor cell proIiferation in brain gliomas with dynamic contrast-enhanced MRI. Shandong Med J, 2018, 58(39): 17-20.
[31]
Jiang JS, Hua Y, Zhou XJ, et al. Quantitative assessment of tumor cell proliferation in brain gliomas with dynamic contrast-enhanced MRI. Acad Radiol, 2019, 26(9): 1215-1221.
[32]
Bradac O, Vrana J, Jiru F, et al. Recognition of anaplastic foci within low-grade gliomas using MR spectroscopy. Br J Neurosurg, 2014, 28(5): 631-636.
[33]
Tamiya T, Kinoshita K, Ono Y, et al. Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology, 2000, 42(5): 333-338.
[34]
Gao W, Wang X, Li FY, et al. Cho/Cr ratio at MR spectroscopy as a biomarker for cellular proliferation activity and prognosis in glioma: correlation with the expression of minichromosome maintenance protein 2. Acta Radiol, 2019, 60(1): 106-112.
[35]
Chen WS, Hong L, Wang F, et al. Investigation of dacomitinib on reducing cell necrosis and enhancing cell apoptosis in C6 glioma rat model by MRI. Biosci Rep, 2019, 39(3): 1-10.
[36]
Zhou JY, Payen JF, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med, 2003, 9(8): 1085-1090.
[37]
Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol, 2014, 16(3): 441-448.
[38]
Suh CH, Park JE, Jung SC, et al. Amide proton transfer-weighted MRI in distinguishing high- and low-grade gliomas: a systematic review and meta-analysis. Neuroradiology, 2019, 61(5): 525-534.
[39]
Park JE, Kim HS, Park KJ, et al. Pre- and posttreatment glioma: Comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation. Radiology, 2016, 278(2): 514-523.

PREV Research progress of MR vessel wall imaging of responsible blood vessels of ischemic stroke
NEXT The research progress of amide proton transfer weighted imaging in neurodegenerative disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn