Share:
Share this content in WeChat
X
Review
The advances in cardiovascular magnetic resonance imaging for light-chain and transthyretin-related amyloidosis
WU Xingqiang  FENG Yuling  LI Chunping  LI Rui 

Cite this article as: Wu XQ, Feng YL, Li CP, et al. The advances in cardiovascular magnetic resonance imaging for light-chain and transthyretin-related amyloidosis. Chin J Magn Reson Imaging, 2020, 11(8): 707-711. DOI:10.12015/issn.1674-8034.2020.08.028.


[Abstract] Amyloidosis represents a group of systemic diseases characterized by deposition of diverse origins misfolded protein fragments in multiple organs. Cardiac involvement, termed cardiac amyloidosis (CA), is the major factor determining the prognosis of patients. The most common types of cardiac amyloidosis in the clinic are light-chain amyloidosis (AL) and transthyretin-related amyloidosis (ATTR). The treatment and prognosis vary according to different amyloidosis types. Therefore, early and accurate diagnosis is essential in clinical setting. Cardiovascular magnetic resonance (CMR) characterized by multi-modality and multi-parameter imaging, could early detect the morphological and functional abnormalities and accurately evaluate the histological feature and microvascular changes in cardiac amyloidosis, providing important information for the diagnosis, risk stratification and prognosis. This article will review the progress of CMR application in cardiac amyloidosis.
[Keywords] cardiovascular magnetic resonance;cardiac amyloidosis;magnetic resonance imaging

WU Xingqiang Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

FENG Yuling Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

LI Chunping Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

LI Rui* Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

*Corresponding to: Li R, E-mail: ddtwg-nsmc@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No.81801674
Received  2020-03-02
Accepted  2020-04-19
DOI: 10.12015/issn.1674-8034.2020.08.028
Cite this article as: Wu XQ, Feng YL, Li CP, et al. The advances in cardiovascular magnetic resonance imaging for light-chain and transthyretin-related amyloidosis. Chin J Magn Reson Imaging, 2020, 11(8): 707-711. DOI:10.12015/issn.1674-8034.2020.08.028.

[1]
Martinez-Naharro A, Hawkins PN, Fontana M. Cardiac amyloidosis. Clin Med (Lond), 2018, 18(Suppl 2): 30-35. DOI: 10.7861/clinmedicine.18-2-s30.
[2]
Siddiqi OK, Ruberg FL. Cardiac amyloidosis: An update on pathophysio logy, diagnosis, and treatment. Trends Cardiovasc Med, 2018, 28(1): 10-21. DOI: 10.1016/j.tcm.2017.07.004.
[3]
Sher T, Gertz MA. Recent advances in the diagnosis and management of cardiac amyloidosis. Future Cardiol, 2014, 10(1): 131-46. DOI: 10.2217/fca.13.85.
[4]
Fontana M, Chung R, Hawkins PN, et al. Cardiovascular magnetic resonance for amyloidosis. Heart Fail Rev, 2015, 20(2): 133-144. DOI: 10.1007/s10741-014-9470-7.
[5]
Pozo E, Kanwar A, Deochand R, et al. Cardiac magnetic resonance evaluation of left ventricular remodelling distribution in cardiac amyloidosis. Heart, 2014, 100(21): 1688-1695. DOI: 10.1136/heartjnl-2014-305710.
[6]
Martinez NA, Treibel TA, Abdel-Gadir A, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol, 2017, 70(4): 466-477. DOI: 10.1016/j.jacc.2017.05.053.
[7]
Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med, 2007, 356(8): 830-840. DOI: 10.1056/NEJMra061889.
[8]
Hashimura H, Kimura F, Ishibashi-Ueda H, et al. Radiologic-pathologic correlation of primary and secondary cardiomyopathies: MR imaging and histopathologic findings in hearts from autopsy and transplantation. Radiographics, 2017, 37(3): 719-736. DOI: 10.1148/rg.2017160082.
[9]
Dorbala S, Vangala D, Bruyere JJ, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail, 2014, 2(4): 358-367. DOI: 10.1016/j.jchf.2014.03.009.
[10]
Li R, Yang ZG, Wen LY, et al. Regional myocardial microvascular dysfunction in cardiac amyloid light-chain amyloidosis: assessment with 3T cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2016, 18: 16. DOI: 10.1186/s12968-016-0240-7.
[11]
Deux JF, Damy T, Rahmouni A, et al. Noninvasive detection of cardiac involvement in patients with hereditary transthyretin associated amyloidosis using cardiac magnetic resonance imaging: a prospective study. Amyloid, 2014, 21(4): 246-255. DOI: 10.3109/13506129.2014.956924.
[12]
Dungu JN, Valencia O, Pinney JH, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging, 2014, 7(2): 133-142. DOI: 10.1016/j.jcmg.2013.08.015.
[13]
Kwong RY, Heydari B, Abbasi S, et al. Characterization of cardiac amyloidosis by atrial late gadolinium enhancement using contrast-enhanced cardiac magnetic resonance imaging and correlation with left atrial conduit and contractile function. Am J Cardiol, 2015, 116(4): 622-629. DOI: 10.1016/j.amjcard.2015.05.021.
[14]
Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation, 2015, 132(16): 1570-1579. DOI: 10.1161/CIRCULATIONAHA.115.016567.
[15]
Boynton SJ, Geske JB, Dispenzieri A, et al. LGE provides incremental prognostic information over serum biomarkers in AL cardiac amyloidosis. JACC Cardiovasc Imaging, 2016, 9(6): 680-686. DOI: 10.1016/j.jcmg.2015.10.027.
[16]
Wan K, Sun J, Han Y, et al. Increased prognostic value of query amyloid late enhancement score in light-chain cardiac amyloidosis. Circ J, 2018, 82(3): 739-746. DOI: 10.1253/circj.CJ-17-0464.
[17]
Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging, 2014, 7(2): 157-165. DOI: 10.1016/j.jcmg.2013.10.008.
[18]
Fontana M, Banypersad SM, Treibel TA, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: A cardiac MR imaging study. Radiology, 2015, 277(2): 388-397. DOI: 10.1148/radiol.2015141744.
[19]
Lin L, Li X, Feng J, et al. The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. J Cardiovasc Magn Reson, 2018, 20(1): 201-202. DOI: 10.1186/s12968-017-0419-6.
[20]
Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging, 2013, 6(4): 488-497. DOI: 10.1016/j.jcmg.2012.11.013.
[21]
Martinez NA, Kotecha T, Norrington K, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging, 2019, 12(5): 810-819. DOI: 10.1016/j.jcmg.2018.02.006.
[22]
Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J, 2015, 36(4): 244-251. DOI: 10.1093/eurheartj/ehu444.
[23]
Pedrizzetti G, Claus P, Kilner PJ, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson, 2016, 18(1): 51. DOI: 10.1186/s12968-016-0269-7.
[24]
Orwat S, Kempny A, Diller GP, et al. Cardiac magnetic resonance feature tracking: a novel method to assess myocardial strain, comparison with echocardiographic speckle tracking in healthy volunteers and in patients with left ventricular hypertrophy. Kardiol Pol, 2014, 72(4): 363-371. DOI: 10.5603/KP.a2013.0319.
[25]
Phelan D, Collier P, Thavendiranathan P, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart, 2012, 98(19): 1442-1448. DOI: 10.1136/heartjnl-2012-302353.
[26]
Li R, Yang ZG, Xu HY, et al. Myocardial deformation in cardiac amyloid light-chain amyloidosis: Assessed with 3T cardiovascular magnetic resonance feature tracking. Sci Rep, 2017, 7(1): 3794. DOI: 10.1038/s41598-017-03699-5.
[27]
Kuetting DL, Homsi R, Sprinkart AM, et al. Quantitative assessment of systolic and diastolic function in patients with LGE negative systemic amyloidosis using CMR. Int J Cardiol, 2017, 232: 336-341. DOI: 10.1016/j.ijcard.2016.12.054.
[28]
Williams LK, Forero JF, Popovic ZB, et al. Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics. J Cardiovasc Magn Reson, 2017, 19(1): 61. DOI: 10.1186/s12968-017-0376-0.
[29]
Wan K, Sun J, Yang D, et al. Left ventricular myocardial deformation on cine MR images: Relationship to severity of disease and prognosis in light-chain amyloidosis. Radiology, 2018, 288(1): 73-80. DOI: 10.1148/radiol.2018172435.
[30]
Clemmensen TS, Eiskjar H, Molgaard H, et al. Abnormal coronary flow velocity reserve and decreased myocardial contractile reserve are main factors in relation to physical exercise capacity in cardiac amyloidosis. J Am Soc Echocardiogr, 2018, 31(1):71-78. DOI: 10.1016/j.echo.2017.09.007.
[31]
Kristen AV, Perz JB, Schonland SO, et al. Non-invasive predictors of survival in cardiac amyloidosis. Eur J Heart Fail, 2007, 9(6-7): 617-624. DOI: 10.1016/j.ejheart.2007.01.012.
[32]
Arenja N, Andre F, Riffel JH, et al. Prognostic value of novel imaging parameters derived from standard cardiovascular magnetic resonance in high risk patients with systemic light chain amyloidosis. J Cardiovasc Magn Reson, 2019, 21(1): 53. DOI: 10.1186/s12968-019-0564-1.
[33]
Brownrigg J, Lorenzini M, Lumley M, et al. Diagnostic performance of imaging investigations in detecting and differentiating cardiac amyloidosis: a systematic review and meta-analysis. ESC Heart Fail, 2019, 6(5): 1041-1051. DOI: 10.1002/ehf2.12511.
[34]
Ridouani F, Damy T, Tacher V, et al. Myocardial native T2 measurement to differentiate light-chain and transthyretin cardiac amyloidosis and assess prognosis. J Cardiovasc Magn Reson, 2018, 20(1): 58. DOI: 10.1186/s12968-018-0478-3.

PREV Applications of magnetic resonance imaging in traumatic spinal cord injury
NEXT CEST MR contrast agent for pH-sensitive imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn