Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance diffusion spectrum imaging in the nervous system
GONG Zhibo  CHEN Honghai  LIU Shufeng  SHA Lin 

Cite this article as: Gong ZB, Chen HH, Liu SF, et al. Research progress of magnetic resonance diffusion spectrum imaging in the nervous system. Chin J Magn Reson Imaging, 2020, 11(9): 809-812, 816. DOI:10.12015/issn.1674-8034.2020.09.020.


[Abstract] Diffusion spectrum imaging (DSI) is an advanced diffusion imaging technology used to describe the fiber tracts profile of the human body. It can truly and accurately visualize intracranial intersecting and complex fiber tracts, which made up for other diffusion imaging's shortcomings. And the degree of fiber tracts damage can be estimated through the use of DSI-related parameters. The two characteristics have great advantages in describing the microstructure of the tissue. This article introduces the fundamental principle of DSI and parameters of diffusion spectrum imaging, and also reveals central nervous system anatomy details and the changes in the white matter fiber structure that cause clinical diseases accroding to DSI. It is helpful for the study of the pathophysiology of central nervous system diseases and also provides more options for diagnosis and treatment of diseases.
[Keywords] diffusion spectrum imaging;central nervous system

GONG Zhibo Department of Radiology, the Second Hospital of Dalian Medical Unversity, Dalian 116000, China

CHEN Honghai* Department of Radiology, the Second Hospital of Dalian Medical Unversity, Dalian 116000, China

LIU Shufeng Department of Radiology, the Second Hospital of Dalian Medical Unversity, Dalian 116000, China

SHA Lin Department of Radiology, the Second Hospital of Dalian Medical Unversity, Dalian 116000, China

*Correspondence to: Chen HH, E-mail: cmuboy@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  The Application and Evaluation Fund Project of Undergraduate Tutor System in the Practice of Imaging Technology Specialty No. DYLX18020
Received  2020-01-22
Accepted  2020-05-21
DOI: 10.12015/issn.1674-8034.2020.09.020
Cite this article as: Gong ZB, Chen HH, Liu SF, et al. Research progress of magnetic resonance diffusion spectrum imaging in the nervous system. Chin J Magn Reson Imaging, 2020, 11(9): 809-812, 816. DOI:10.12015/issn.1674-8034.2020.09.020.

[1]
吴慧,高阳,刘挨师,等.单双指数及拉伸指数模型在鉴别布氏杆菌性脊柱炎与脊柱结核中的价值.磁共振成像, 2019, 10(11): 835-839.
[2]
韩蕾,柯晓艾,周青,等. DWI和最小ADC值对成人颅内室管膜瘤分级诊断的价值.磁共振成像, 2019, 10(7): 481-485.
[3]
周舒畅,夏黎明,吴维,等.单b值磁共振DWI对肺部良恶性病变的诊断价值.放射学实践, 2016, 31(8): 728-733.
[4]
田水水,许永生,高玉岭,等.表观扩散系数直方图鉴别肝细胞癌与肝内胆管细胞癌的价值.磁共振成像, 2019, 10(7): 514-518.
[5]
杨可乐,李响,王兴东,等. MR小肠造影与扩散加权成像表观扩散系数对Crohn病活动性的诊断价值.磁共振成像, 2020, 11(1): 40-44.
[6]
索学玲,龚启勇. DWI技术在中枢神经系统中的应用及研究进展.放射学实践, 2018, 33(2): 210-214.
[7]
Solso S, Xu R, Proudfoot J, et al. Diffusion tensor imaging provides evidence of possible axonal overconnectivity in frontal lobes in autism spectrum disorder toddlers. Biol Psychiatry, 2016, 79(8): 676-684.
[8]
张亚,陈博宇,商秀丽,等.早期帕金森病患者脑白质损害的扩散张量成像研究.放射学实践, 2017, 32(12): 1248-1251.
[9]
Steven AJ, Zhuo J, Melhem ER. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol, 2014, 202(1): W26-W33.
[10]
Wiegell MR, Larsson HB, Wedeen VJ. Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology, 2000, 217(3): 897-903.
[11]
Wedeen V, Reese T, Tuch D, et al. Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. Denver: Proceedings of the Proceedings of the 8th Annual Meeting of ISMRM, 2000.
[12]
Hagmann P, Jonasson L, Maeder P, et al. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics, 2006, 26(suppl 1): S205-S223.
[13]
Glenn GR, Kuo LW, Chao YP, et al. Mapping the orientation of white matter fiber bundles: a comparative study of diffusion tensor imaging, diffusional kurtosis imaging, and diffusion spectrum imaging. AJNR Am J Neuroradiol, 2016, 37(7): 1216-1222.
[14]
Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol, 2008, 6(7): e159.
[15]
Wedeen VJ, Hagmann P, Tseng WYI, et al. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med, 2005, 54(6): 1377-1386.
[16]
Yeh FC, Tseng WYI. Sparse solution of fiber orientation distribution function by diffusion decomposition. PLoS One, 2013, 8(10): e75747.
[17]
Kuo LW, Lee CY, Chen JH, et al. Mossy fiber sprouting in pilocarpine-induced status epilepticus rat hippocampus: a correlative study of diffusion spectrum imaging and histology. Neuroimage, 2008, 41(3): 789-800.
[18]
Granziera C, Schmahmann JD, Hadjikhani N, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One, 2009, 4(4): e5101.
[19]
Sun C, Wang Y, Cui R, et al. Human thalamic-prefrontal peduncle connectivity revealed by diffusion spectrum imaging fiber tracking. Front Neuroanat, 2018, 12: 24.
[20]
Wu Y, Sun D, Wang Y, et al. Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Brain Res, 2016, 1646: 152-159.
[21]
Wei PH, Mao ZQ, Cong F, et al. Connection between bilateral temporal regions: tractography using human connectome data and diffusion spectrum imaging. J Clin Neurosci, 2017, 39: 103-108.
[22]
Gaige TA, Kwon HS, Dai G, et al. Multiscale structural analysis of mouse lingual myoarchitecture employing diffusion spectrum magnetic resonance imaging and multiphoton microscopy. J Biomed Opt, 2008, 13(6): 064005.
[23]
Elsaid NM, Stone M, Roys S, et al. Diffusion spectrum imaging tractography of the human tongue. Proceedings of the Annals 25th Annual Meeting ISMRM, 2017.
[24]
Yoshino M, Abhinav K, Yeh FC, et al. Visualization of cranial nerves using high-definition fiber tractography. Neurosurgery, 2016, 79(1): 146-165.
[25]
Liston C, Cohen MM, Teslovich T, et al. Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: pathway to disease or pathological end point? Biol Psychiatry, 2011, 69(12): 1168-1177.
[26]
Pavuluri MN, Yang S, Kamineni K, et al. Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder. Biol Psychiatry, 2009, 65(7): 586-593.
[27]
Lawrence KE, Levitt JG, Loo SK, et al. White matter microstructure in subjects with attention-deficit/hyperactivity disorder and their siblings. J Am Acad Child Adolesc Psychiatry, 2013, 52(4): 431-440, e4.
[28]
Chiang HL, Chen YJ, Shang CY, et al. Different neural substrates for executive functions in youths with ADHD: a diffusion spectrum imaging tractography study. Psychological medicine, 2016, 46(6): 1225-1238.
[29]
Chiang HL, Hsu YC, Shang CY, et al. White matter endophenotype candidates for ADHD: a diffusion imaging tractography study with sibling design. Psychol Med, 2020, 50(7): 1203-1213.
[30]
Lin YC, Shih YC, Tseng WY, et al. Cingulum correlates of cognitive functions in patients with mild cognitive impairment and early Alzheimer’s disease: a diffusion spectrum imaging study. Brain Topogr, 2014, 27(3): 393-402.
[31]
Lin HY, Perry A, Cocchi L, et al. Development of frontoparietal connectivity predicts longitudinal symptom changes in young people with autism spectrum disorder. Transl Psychiatry, 2019, 9(1): 86.
[32]
Greenwood TA, Braff DL, Light GA, et al. Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch Gen Psychiatry, 2007, 64(11): 1242-1250.
[33]
Schürhoff F, Bellivier F, Jouvent R, et al. Early and late onset bipolar disorders: two different forms of manic-depressive illness? J Affect Disord, 2000, 58(3): 215-221.
[34]
Wu CH, Hwang TJ, Chen YJ, et al. Altered integrity of the right arcuate fasciculus as a trait marker of schizophrenia: a sibling study using tractography--based analysis of the whole brain. Hum Brain Mapping, 2015, 36(3): 1065-1076.
[35]
Griffa A, Baumann PS, Ferrari C, et al. Characterizing the connectome in schizophrenia with diffusion spectrum imaging. Hum Brain Mapping, 2015, 36(1): 354-366.
[36]
Benetti S, Pettersson-Yeo W, Allen P, et al. Auditory verbal hallucinations and brain dysconnectivity in the perisylvian language network: a multimodal investigation. Schizophr Bull, 2013, 41(1): 192-200.
[37]
Wu CH, Hwang TJ, Chen PJ, et al. Reduced structural integrity and functional lateralization of the dorsal language pathway correlate with hallucinations in schizophrenia: A combined diffusion spectrum imaging and functional magnetic resonance imaging study. Psychiatry Res, 2014, 224(3): 303-310.
[38]
Attebo K, Mitchell P, Cumming R, et al. Prevalence and causes of amblyopia in an adult population. Ophthalmology, 1998, 105(1): 154-159.
[39]
Tsai TH, Su HT, Hsu YC, et al. White matter microstructural alterations in amblyopic adults revealed by diffusion spectrum imaging with systematic tract-based automatic analysis. Br J Ophthalmol, 2019, 103(4): 511-516.
[40]
Tobisch A, Schultz T, Stirnberg R, et al. Comparison of basis functions and q-space sampling schemes for robust compressed sensing reconstruction accelerating diffusion spectrum imaging. NMR Biomed, 2019, 32(3): e4055.
[41]
赵智勇,刘小征,范明霞,等.弥散频谱成像的研究进展.磁共振成像, 2016, 7(7): 535-540.

PREV Basic principles of intravoxel incoherent motion and diffusional kurtosis imaging and their applications in central nervous system diseases
NEXT Progresses of brain imaging in patients with chronic alcohol dependence
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn