Share:
Share this content in WeChat
X
Review
Application of CT, PET-CT and MRI in the identification of spinal myeloma and metastasis
XIONG Xing  WANG Jia  ZHANG Yu  HU Chunhong 

Cite this article as: Xiong X, Wang J, Zhang Y, et al. Application of CT, PET-CT and MRI in the identification of spinal myeloma and metastasis. Chin J Magn Reson Imaging, 2020, 11(9): 823-825. DOI:10.12015/issn.1674-8034.2020.09.024.


[Abstract] Myeloma and metastasis are common malignant lesions of the spine, and their clinical symptoms and imaging manifestations are similar. When patients only see a doctor with back pain, a correct diagnosis is particularly important for further examination and treatment of patients. This article reviews the application of CT, PET-CT and MRI in the differential diagnosis of multiple myeloma and metastasis.
[Keywords] spinal column;myeloma;metastasis;diagnostic techniques

XIONG Xing Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

WANG Jia Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

ZHANG Yu Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Medical Imaging, Soochow University, Suzhou 215006, China

HU Chunhong* Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Medical Imaging, Soochow University, Suzhou 215006, China

*Correspondence to: Hu CH, Email: hch5305@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This article is supported by National Key Research and Development Program of China No. 2017YFC0114300
Received  2020-04-03
Accepted  2019-07-25
DOI: 10.12015/issn.1674-8034.2020.09.024
Cite this article as: Xiong X, Wang J, Zhang Y, et al. Application of CT, PET-CT and MRI in the identification of spinal myeloma and metastasis. Chin J Magn Reson Imaging, 2020, 11(9): 823-825. DOI:10.12015/issn.1674-8034.2020.09.024.

[1]
Alzrigat M, Párraga AA, Jernberg-Wiklund H. Epigenetics in multiple myeloma: From mechanisms to therapy. Semin Cancer Biol, 2018, 51: 101-115. DOI: 10.1016/j.semcancer.2017.09.007
[2]
Simeone FJ, Harvey JP, Yee AJ, et al. Value of low-dose whole-body CT in the management of patients with multiple myeloma and precursor states. Skeletal Radiol, 2019, 48(5): 773-779. DOI: 10.1007/s00256-018-3066-6
[3]
Engelhardt M, Terpos E, Kleber M, et al. European Myeloma Network Recommendations on the Evaluation and Treatment of Newly Diagnosed Patients With Multiple Myeloma. Haematologica, 2014, 99(2): 232-242. DOI: 10.3324/haematol.2013.099358.
[4]
Park GE, Jee WH, Lee SY, et al. Differentiation of multiple myeloma and metastases: use of axial diffusion-weighted MR imaging in addition to standard MR imaging at 3 T. PLoS One, 2018, 13(12): e0208860. DOI: 10.1371/journal.pone.0208860
[5]
Zhang L, Gong ZX. Clinical characteristics and prognostic factors in bone metastases from lung cancer. Med Sci Monit, 2017, 23: 4087-4094. DOI: 10.12659/msm.902971
[6]
Ravanelli M, Agazzi GM, Ganeshan BJ, et al. CT texture analysis as predictive factor in metastatic lung adenocarcinoma treated with tyrosine kinase inhibitors (TKIs). Eur J Radiol, 2018, 109: 130-135. DOI: 10.1016/j.ejrad.2018.10.016
[7]
D'Anastasi M, Grandl S, Reiser MF, et al. Radiological diagnostics of multiple myeloma. Radiologe, 2014, 54 (6): 556-563. DOI: 10.1007/s00117-013-2628-9
[8]
Ippolito D, Besostri V, Bonaffini PA, et al. Diagnostic value of whole-body low-dose computed tomography (WBLDCT) in bone lesions detection in patients with multiple myeloma (MM). Eur J Radiol, 2013, 82(12): 2322-2327. DOI: 10.1016/j.ejrad.2013.08.036
[9]
Lütje S, Rooy JW, Croockewit S, et al. Role of radiography MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma. Ann Hematol, 2009, 88(12): 1161-1168. DOI: 10.1007/s00277-009-0829-0
[10]
Cavo M, Terpos E, Nanni C, et al. Role of 18 F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the international myeloma working group. Lancet Oncol, 2017, 18(4): e206-e217. DOI: 10.1016/S1470-2045(17)30189-4
[11]
Li Q, Ma J, Li H, et al. Correlation between uptake of 18 F-FDG during PET/CT and Ki-67 expression in patients newly diagnosed with multiple myeloma having extramedullary involvement. Technol Cancer Res Treat, 2019, 18: 1533033819849067. DOI: 10.1177/1533033819849067
[12]
Horger M, Kanz L, Denecke B, et al. The benefit of using whole-body, low-dose, nonenhanced, multidetector computed tomography for follow-up and therapy response monitoring in patients with multiple myeloma. Cancer, 2007, 109(8): 1617-1626. DOI: 10.1002/cncr.22572
[13]
Lambert L, Ourednicek P, Meckova Z, et al. Whole-body low-dose computed tomography in multiple myeloma staging: superior diagnostic performance in the detection of bone lesions, vertebral compression fractures, rib fractures and extraskeletal findings compared to radiography with similar radiation exposure. Oncol Lett, 2017, 13(4): 2490-2494. DOI: 10.3892/ol.2017.5723
[14]
马青,刘吉华,陈海松,等.脊椎多发性骨髓瘤与溶骨性转移瘤的CT鉴别诊断.实用放射学杂志, 2016, 32(8): 1254-1257. DOI: 10.3969/j.issn.1002-1671.2016.08.023
[15]
宋鑫,魏君,杨新宇,等.胸腰椎体多发性骨髓瘤和溶骨性转移瘤的CT影像特点研究.临床和实验医学杂志, 2018, 17(1): 100-102. DOI: 10.3969/j.issn.1671-4695.2018.01.032
[16]
张海波,薛华丹,李烁.多发性骨髓瘤的影像学进展及临床意义.中国医学科学院学报, 2014, 36(6): 671-674. DOI: 10.3881/j.issn.1000-503X.2014.06.021
[17]
Xu R, Wang J, Huang XY, et al. Clinical value of spectral CT imaging combined with AFP in identifying liver cancer and hepatic focal nodular hyperplasia. J BUON, 2019, 24 (4): 1429-1434.
[18]
张进,王艺婷,石瑞,等.能谱CT定量参数鉴别脊柱肺癌骨转移瘤及骨髓瘤的研究.中国现代医生, 2017, 55(32): 113-116.
[19]
Kosmala A, Weng AM, Heidemeier A, et al. Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology, 2018, 286(1): 205-213. DOI: 10.1148/radiol.2017170281
[20]
Hur J, Yoon CS, Ryu YH, et al. Efficacy of multidetector row computed tomography of the spine in patients with multiple myeloma: comparison with magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography. J Comput Assist Tomogr, 2007, 31(3): 342-347. DOI: 10.1097/01.rct.0000237820.41549.c9
[21]
Baur-Melnyk A, Buhmann S, Becker C, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol, 2008, 190(4): 1097-1104. DOI: 10.2214/AJR.07.2635
[22]
林琳,李勇,王丽范,等. 18F-FDG PET/CT在多发性骨髓瘤与骨转移瘤鉴别诊断中的应用.中国医学影像学杂志, 2017, 25(11): 849-852.
[23]
Collins CD. Multiple myeloma. Cancer Imaging, 2010, 10(1): 20-31. DOI: 10.1102/1470-7330.2010.0013
[24]
Mehta GR, Suhail F, Haddad RY, et al. Multiple myeloma. Dis Mon, 2014, 60(10): 483-488. DOI: 10.1016/j.disamonth.2014.08.002
[25]
杨天霞,王海涛,袁岑,等. 18F-FDG PET/CT在前列腺癌骨转移与多发性骨髓瘤鉴别诊断中的应用分析.中国医学前沿杂志, 2019, 11(8): 117-121. DOI: 10.12037/YXQY.2019.08-23
[26]
Basha MA, Hamed MA, Refaat R, et al. Diagnostic performance of 18F-FDG PET/CT and whole-body MRI before and early after treatment of multiple myeloma: a prospective comparative study. Jpn J Radiol, 2018, 36 (6): 382-393. DOI: 10.1007/s11604-018-0738-z
[27]
Tang HS, Ahlawat HV, Fayad LM. Multiparametric MR imaging of benign and malignant bone lesions. Magn Reson Imaging Clin N Am, 2018, 26 (4): 559-569. DOI: 10.1016/j.mric.2018.06.010
[28]
Dutoit JC, Claus E, Offner F, et a1. Combined evaluation of conventional MRI, dynamic contrast-enhanced MRI and diffusion weighted for response evaluation of patients with multiple myeloma. Eur J Radiol, 2016, 85(2): 373-382. DOI: 10.1016/j.ejrad.2015.11.040
[29]
Rajwanshi A, Srinivas R, Upasana G. Malignant small round cell tumors. J Cytol, 2009, 26(1): 1-10. DOI: 10.4103/0970-9371.54861
[30]
Li S, Siegal GP. Small cell tumors of bone. Adv Anat Pathol, 2010, 17(1): 1-11. DOI: 10.1097/PAP.0b013e3181bb6b9c
[31]
Roque T, Risser L, Kersemans V, et al. A DCE-MRI Driven 3-D reaction-diffusion model of solid tumor growth. IEEE Trans Med Imaging, 2018, 37 (3): 724-732. DOI: 10.1109/TMI.2017.2779811
[32]
Moulopoulos LA, Maris TG, Papanikolaou N, et al. Detection of malignant bone marrow involvement with dynamic contrast-enhanced magnetic resonance imaging. Ann Oncol, 2003, 14(1): 152-158. DOI: 10.1093/annonc/mdg007
[33]
Dutoit JC, Claus E, Offner F, et al. Combined evaluation of conventional MRI, dynamic contrast-enhanced MRI and diffusion weighted imaging for response evaluation of patients with multiple myeloma. Eur J Radiol, 2016, 85 (2): 373-382. DOI: 10.1016/j.ejrad.2015.11.040
[34]
Lang N, Su MY, Yu HJ, et al. Differentiation of myeloma and metastatic cancer in the spine using dynamic contrast enhanced MRI. Magn Reson Imaging, 2013, 31 (8): 1285-1291. DOI: 10.1016/j.mri.2012.10.006
[35]
Larbi A, Omoumi P, Pasoglou V, et al. Whole-body MRI to assess bone involvement in prostate cancer and multiple myeloma: comparison of the diagnostic accuracies of the T1, short tau inversion recovery (STIR), and high b-values diffusion-weighted imaging (DWI) sequences. Eur Radiol, 2019, 29 (8): 4503-4513. DOI: 10.1007/s00330-018-5796-1
[36]
Lisson CS, Lisson CG, Flosdorf K, et al. Diagnostic value of MRI-based 3D texture analysis for tissue characterization and discrimination of low-grade chondrosarcoma from enchondroma: a pilot study. Eur Radiol, 2018, 28 (2): 468-477. DOI: 10.1007/s00330-017-5014-6
[37]
Reischauer C, Patzwahl R, Koh DM, et al. Texture analysis of apparent diffusion coefficient maps for treatment response assessment in prostate cancer bone metastases-A pilot study. Eur J Radiol, 2018, 101: 184-190. DOI: 10.1016/j.ejrad.2018.02.024

PREV Advances in magnetic resonance imaging of autism spectrum disorder
NEXT Application and new progress of bone marrow fat quantification in osteoporosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn