Share:
Share this content in WeChat
X
Review
Application progress of functional magnetic resonance imaging on differential diagnosis between tumor recurrence and pseudoprogression of gliomas
QIN Danlei  ZHANG Hui 

Cite this article as: Qin DL, Zhang H. Application progress of functional magnetic resonance imaging on differential diagnosis between tumor recurrence and pseudoprogression of gliomas. Chin J Magn Reson Imaging, 2020, 11(10): 931-933. DOI:10.12015/issn.1674-8034.2020.10.024.


[Abstract] Gliomas are the most common primary malignant brain tumors in adults with a dismal prognosis. The postoperative recurrence and pseudoprogression of gliomas may present with new and/or increasing enhancing mass lesions in conventional MRI. Differential diagnosis of glioma postoperative recurrence and pseudoprogression is still a major clinical challenge because management of these two entities is diametrically opposed. This article reviews the current research on the application of magnetic resonance imaging techniques in the evaluation of postoperative recurrence and pseudoprogression of gliomas.
[Keywords] glioma;functional magnetic resonance imaging;recurrence;pseudoprogression;differential diagnosis

QIN Danlei Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

ZHANG Hui* Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

*Correspondence to: Zhang H, E-mail: zhanghui_mr@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No. 81971593
Received  2020-07-23
Accepted  2020-08-07
DOI: 10.12015/issn.1674-8034.2020.10.024
Cite this article as: Qin DL, Zhang H. Application progress of functional magnetic resonance imaging on differential diagnosis between tumor recurrence and pseudoprogression of gliomas. Chin J Magn Reson Imaging, 2020, 11(10): 931-933. DOI:10.12015/issn.1674-8034.2020.10.024.

[1]
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 2005, 352(10): 987-996. DOI: 10.1056/NEJMoa043330.
[2]
《中国中枢神经系统胶质瘤诊断和治疗指南》编写组.中国中枢神经系统胶质瘤诊断与治疗指南(2015).中华医学杂志, 2016, 96(7): 485-509. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.003.
[3]
Brandsma D, Stalpers L, Taal W, et al. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol, 2008, 9(5): 453-461. DOI: 10.1016/S1470-2045(08)70125-6.
[4]
Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol, 2009, 22(6): 633-638. DOI: 10.1097/WCO.0b013e328332363e.
[5]
Radbruch A, Fladt J, Kickingereder P, et al. Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro Oncol, 2015, 17(1): 151-159. DOI: 10.1093/neuonc/nou129.
[6]
Abbasi AW, Westerlaan HE, Holtman GA, et al. Incidence of tumour progression and pseudoprogression in high-grade gliomas: a systematic review and meta-analysis. Clin Neuroradiol, 2018, 28(3): 401-411. DOI: 10.1007/s00062-017-0584-x.
[7]
Zikou A, Sioka C, Alexiou GA, et al. Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging, 2018, 2018: 6828396. DOI: 10.1155/2018/6828396.
[8]
Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol, 2008, 26(13): 2192-2197. DOI: 10.1200/JCO.2007.14.8163.
[9]
Li H, Li J, Cheng G, et al. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg, 2016, 151: 31-36. DOI: 10.1016/j.clineuro.2016.10.004.
[10]
Cha J, Kim ST, Kim HJ, et al. Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. AJNR Am J Neuroradiol, 2014, 35(7): 1309-1317. DOI: 10.3174/ajnr.A3876.
[11]
Reimer C, Deike K, Graf M, et al. Differentiation of pseudoprogression and real progression in glioblastoma using ADC parametric response maps. PLoS One, 2017, 12(4): e0174620. DOI: 10.1371/journal.pone.0174620.
[12]
Kazda T, Bulik M, Pospisil P, et al. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging. Neuroimage Clin, 2016, 11: 316-321. DOI: 10.1016/j.nicl.2016.02.016.
[13]
Wu CC, Jain R, Radmanesh A, et al. Predicting genotype and survival in glioma using standard clinical MR imaging apparent diffusion coefficient images: a pilot study from the cancer genome atlas. AJNR Am J Neuroradiol, 2018, 39(10): 1814-1820. DOI: 10.3174/ajnr.A5794.
[14]
Kim HS, Suh CH, Kim N, et al. Histogram analysis of intravoxel incoherent motion for differentiating recurrent tumor from treatment effect in patients with glioblastoma: initial clinical experience. AJNR Am J Neuroradiol, 2014, 35(3): 490-497. DOI: 10.3174/ajnr.A3719.
[15]
Liu ZC, Yan LF, Hu YC, et al. Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial. BMC Med Imaging, 2017, 17(1): 10. DOI: 10.1186/s12880-017-0183-y.
[16]
Wang S, Martinez-Lage M, Sakai Y, et al. Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol, 2016, 37(1): 28-36. DOI: 10.3174/ajnr.A4474.
[17]
Tan Y, Zhang H, Zhao RF, et al. Comparison of the values of MRI diffusion kurtosis imaging and diffusion tensor imaging in cerebral astrocytoma grading and their association with aquaporin-4. Neurol India, 2016, 64(2): 265-272. DOI: 10.4103/0028-3886.177621.
[18]
Thomas AA, Arevalo-Perez J, Kaley T, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neurooncol, 2015, 125(1): 183-190. DOI: 10.1007/s11060-015-1893-z.
[19]
Yoo RE, Choi SH, Kim TM, et al. Dynamic contrast-enhanced MR imaging in predicting progression of enhancing lesions persisting after standard treatment in glioblastoma patients: a prospective study. Eur Radiol, 2017, 27(8): 3156-3166. DOI: 10.1007/s00330-016-4692-9.
[20]
Prager AJ, Martinez N, Beal K, et al. Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol, 2015, 36(5): 877-885. DOI: 10.3174/ajnr.A4218.
[21]
Choi YJ, Kim HS, Jahng GH, et al. Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol, 2013, 54(4): 448-454. DOI: 10.1177/0284185112474916.
[22]
Ye J, Bhagat SK, Li H, et al. Differentiation between recurrent gliomas and radiation necrosis using arterial spin labeling perfusion imaging. Exp Ther Med, 2016, 11(6): 2432-2436. DOI: 10.3892/etm.2016.3225.
[23]
Wang YL, Chen S, Xiao HF, et al. Differentiation between radiation-induced brain injury and glioma recurrence using 3D pCASL and dynamic susceptibility contrast-enhanced perfusion-weighted imaging. Radiother Oncol, 2018, 129(1): 68-74. DOI: 10.1016/j.radonc.2018.01.009.
[24]
Verma G, Chawla S, Mohan S, et al. Three-dimensional echo planar spectroscopic imaging for differentiation of true progression from pseudoprogression in patients with glioblastoma. NMR Biomed, 2019, 32(2): e4042. DOI: 10.1002/nbm.4042.
[25]
Ma B, Blakeley JO, Hong X, et al. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging, 2016, 44(2): 456-462. DOI: 10.1002/jmri.25159.
[26]
Park JE, Kim HS, Park KJ, et al. Pre- and posttreatment glioma:comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation. Radiology, 2016, 278(2): 514-523. DOI: 10.1148/radiol.2015142979.
[27]
Zhou J, Heo HY, Knutsson L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[28]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[29]
Kim JY, Park JE, Jo Y, et al. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol, 2019, 21(3): 404-414. DOI: 10.1093/neuonc/noy133.
[30]
Elshafeey N, Kotrotsou A, Hassan A, et al. Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat Commun, 2019, 10(1): 3170. DOI: 10.1038/s41467-019-11007-0.

PREV The principle of amide proton transfer imaging and advances in arterial occlusive cerebral infarction
NEXT Status of artificial intelligence in meningioma image
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn