Share:
Share this content in WeChat
X
Review
Status of artificial intelligence in meningioma image
ZHENG Fei  CHEN Xuzhu 

Cite this article as: Zheng F, Chen XZ. Status of artificial intelligence in meningioma image. Chin J Magn Reson Imaging, 2020, 11(10): 934-936. DOI:10.12015/issn.1674-8034.2020.10.025.


[Abstract] The usage of artificial intelligence (AI) in medical images is rapid. It has been used in the images of meningioma for the accurate segmentation of peritumoral edema, prediction of pathological grades, and differential diagnosis. This paper is to review the application and further progression of AI in meningioma images.
[Keywords] meningioma;artificial intelligence;machine learning;radiomics

ZHENG Fei Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

CHEN Xuzhu* Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

*Correspondence to: Chen XZ, E-mail: radiology888@aliyun.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Key Research and Development Program of China No. 2018YFC0115604 National Natural Science Foundation of China No. 81772005 Collaborative Innovative Major Special Project Supported by Beijing Municipal Science & Technology Commission No. Z191199996619088
Received  2020-07-20
Accepted  2020-08-04
DOI: 10.12015/issn.1674-8034.2020.10.025
Cite this article as: Zheng F, Chen XZ. Status of artificial intelligence in meningioma image. Chin J Magn Reson Imaging, 2020, 11(10): 934-936. DOI:10.12015/issn.1674-8034.2020.10.025.

[1]
The dartmouth artificial intelligence conference. The next fifty years. Available at: https//www.dartmouth.edu/wai50/homepage.html. DOI: , 2017.
[2]
Hamet P, Johanne TJ. Artificial intelligence in medicine. Metabolism, 2017, 69(Suppl 1): S36-S40. DOI: 10.1016/j.metabol.2017.01.011.
[3]
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5.
[4]
McCradden MD, Baba A, Saha A, et al. Ethical concerns around use of artificial intelligence in health care research from the perspective of patients with meningioma, caregivers and health care providers: a qualitative study. CMAJ Open, 2020, 8(1): 90-95. DOI: 10.1038/s41568-018-0016-5.
[5]
Laukamp KR, Thiele F, Shakirin G, et al. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Eur Radiol, 2019, 29(1): 124-132. DOI: 10.1007/s00330-018-5595-8.
[6]
Stember JN, Celik H, Krupinski E, et al. Eye tracking for deep learning segmentation using convolutional neural networks. J Digit Imaging, 2019, 32(4): 597-604. DOI: 10.1007/s10278-019-00220-4.
[7]
Laukamp KR, Pennig L, Thiele F, et al. Automated meningioma segmentation in multiparametric MRI: comparable effectiveness of a deep learning model and manual segmentation. Clin Neuroradiol, DOI: 2020. DOI: 10.1007/s00062-020-00884-4.
[8]
Latini F, Larsson EM, Ryttlefors M. Rapid and accurate MRI segmentation of peritumoral brain edema in meningiomas. Clin Neuroradiol, 2017, 27(2): 145-152. DOI: 10.1007/s00062-015-0481-0.
[9]
Krivoshapkin AL, Sergeev GS, Kalneus LE, et al. New software for preoperative diagnostics of meningeal tumor histologic types. World Neurosurg, 2016, 90: 123-132. DOI: 10.1016/j.wneu.2016.02.084.
[10]
Arokia Jesu Prabhu L, Jayachandran A. Mixture model segmentation system for parasagittal meningioma brain tumor classification based on hybrid feature vector. J Med Syst, 2018, 42(12): 251. DOI: 10.1007/s10916-018-1094-3.
[11]
Hale AT, Stonko DP, Wang L, et al. Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging. Neurosurg Focus, 2018, 45(5): 401-402. DOI: 10.3171/2018.8.FOCUS18191.
[12]
Lu Y, Liu L, Luan S, et al. The diagnostic value of texture analysis in predicting WHO grades of meningiomas based on ADC maps: an attempt using decision tree and decision forest. Eur Radiol, 2019, 29(3): 1318-1328. DOI: 10.1007/s00330-018-5632-7.
[13]
Zhu Y, Man C, Gong L, et al. A deep learning radiomics model for preoperative grading in meningioma. Eur J Radiol, 2019, 116: 128-134. DOI: 10.1016/j.ejrad.2019.04.022.
[14]
Zhu H, Fang Q, He H, et al. Automatic prediction of meningioma grade image based on data amplification and improved convolutional neural network. Comput Math Methods Med, 2019, 2019: 7289273. DOI: 10.1155/2019/7289273.
[15]
Hamerla G, Meyer HJ, Schob S, et al. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Magn Reson Imaging, 2019, 63: 244-249. DOI: 10.1016/j.mri.2019.08.011.
[16]
Laukamp KR, Shakirin G, Baeßler B, et al. Accuracy of radiomics-based feature analysis on multiparametric magnetic resonance images for noninvasive meningioma grading. World Neurosurg, 2019, 132: 366-390. DOI: 10.1016/j.wneu.2019.08.148.
[17]
Ke C, Chen H, Lv X, et al. Differentiation between benign and nonbenign meningiomas by using texture analysis from multiparametric MRI. J Magn Reson Imaging, 2020, 51(6): 1810-1820. DOI: 10.1002/jmri.26976.
[18]
Shrot S, Salhov M, Dvorski N, et al. Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme. Neuroradiology, 2019, 61(7): 757-765. DOI: 10.1007/s00234-019-02195-z.
[19]
Li X, Lu Y, Xiong J, et al. Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis. J Neuroradiol, 2019, 46(5): 281-287. DOI: 10.1016/j.neurad.2019.05.013.
[20]
Abdelaziz Ismael SA, Mohammed A, Hefny H. An enhanced deep learning approach for brain cancer MRI images classification using residual networks. Artif Intell Med, 2020, 102: 101779. DOI: 10.1016/j.artmed.2019.101779.
[21]
方谦昊,朱红,何瀚志,等.基于卷积神经网络的脑膜瘤亚型影像自动分级.南京师大学报(自然科学版), 2018, 41(3): 22-27.
[22]
虞芯仪,耿承军,冯银波,等.基于常规MRI图像的纹理分析对脑膜瘤术前分级的临床价值.中华放射学杂志, 2018, 52(5): 356-362.
[23]
Park YW,Oh J,You SC, et al.采用常规MR成像和扩散张量成像的影像组学和机器学习可准确预测脑膜瘤分级和组织学分型.国际医学放射学杂志, 2019, 42(5): 627-628. DOI: 10.19300/j.2019.e0805.
[24]
朱永北.基于定量影像组学的脑肿瘤分级预测.哈尔滨:哈尔滨理工大学, 2019. DOI: 10.27063/d.cnki.ghlgu.2019.000021
[25]
潘波敏,叶成坤,范光伟,等. MRI纹理分析对术前脑膜瘤分级鉴别的临床价值.临床神经外科杂志, 2020, 17(1): 47-51.
[26]
Laukamp KR,Thiele F,Shakirin G, et al.基于常规多参数MRI的深度学习全自动检测并分割脑膜瘤.国际医学放射学杂志, 2019, 42(2): 244. DOI: 10.19300/j.2019.e0107.
[27]
张烁,程敬亮,王程程,等. MRI纹理分析对鉴别孤立性纤维性肿瘤/血管周细胞瘤与血管瘤型脑膜瘤的临床价值.放射学实践, 2019, 34(8): 841-846. DOI: 10.13609/j.cnki.1000-0313.2019.08.003.
[28]
王叶,熊飞,黄文才,等.增强MRI的肿瘤纹理分析来鉴别诊断颅内血管周细胞瘤与血管型脑膜瘤.华南国防医学杂志, 2019, 33(1): 17-20. DOI: 10.13730/j.issn.1009-2595.2019.01.005.
[29]
唐青青,Sushant S Hada,马勋泰.体视学方法探索脑膜瘤体积、表面积密度、病理类型与瘤周水肿的关系.成都医学院学报, 2020, 15(1): 62-66.

PREV Application progress of functional magnetic resonance imaging on differential diagnosis between tumor recurrence and pseudoprogression of gliomas
NEXT FMRI research progress of post-stroke aphasis following treatment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn