Share:
Share this content in WeChat
X
Review
Application progresses of intravoxel incoherent motion imaging in heart disease
XIANG Xiaorui  CHEN Zixian  LIN Chen  NAN Jiang  ZHUANG Xin  XUE Jingmei  LEI Junqiang  GUO Shunlin 

Cite this article as: Xiang XR, Chen ZX, Lin C, et al. Application progresses of intravoxel incoherent motion imaging in heart disease. Chin J Magn Reson Imaging, 2020, 11(10): 940-942. DOI:10.12015/issn.1674-8034.2020.10.027.


[Abstract] Since the emergence of intravoxel incoherent motion (IVIM) technique, after nearly 30 years of continuous development and practice, considerable progress has been made in quantitatively reflecting the diffusion and perfusion information of living tissue. As a new technique reflecting the pathological and physiological characteristics of myocardial tissue at the molecular level, it has clinical significance for the diagnosis and treatment of heart disease, but also faces many challenges. The application progresses of IVIM in heart disease were reviewed in this article.
[Keywords] intravoxel incoherent motion;magnetic resonance imaging;heart disease

XIANG Xiaorui The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

CHEN Zixian Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

LIN Chen The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

NAN Jiang Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

ZHUANG Xin Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

XUE Jingmei Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

LEI Junqiang Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

GUO Shunlin* Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

*Correspondence to: Guo SL, E-mail: guoshl@lzu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of Gansu Province Youth Science and Technology Foundation No. 18JR3RA364 the First Hospital of Lanzhou University Hospital Foundation No. ldyyyn2015-06
Received  2020-05-15
Accepted  2020-06-18
DOI: 10.12015/issn.1674-8034.2020.10.027
Cite this article as: Xiang XR, Chen ZX, Lin C, et al. Application progresses of intravoxel incoherent motion imaging in heart disease. Chin J Magn Reson Imaging, 2020, 11(10): 940-942. DOI:10.12015/issn.1674-8034.2020.10.027.

[1]
Iima M, Le Bihan D. Clinical intravoxel incoherent motion and diffusion MR imaging: Past, present, and future. Radiology, 2016, 278(1): 13-32.
[2]
Kinno M, Nagpal P, Horgan S, et al. Comparison of echocardiography, cardiac magnetic resonance, and computed tomographic imaging for the evaluation of left ventricular myocardial function: Part 1 (Global Assessment). Curr Cardiol Rep, 2017, 19(1): 9.
[3]
Zhang ZQ, Xu L. The current status and technical advances in cardiac MRI. Chin J Magn Reson Imaging, 2013, 4(3): 218-225.
[4]
Yin Y, Gan J. Intravoxel incoherent motion imaging. J Chin Clin Med Imaging, 2013, 24(5): 353-356.
[5]
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
[6]
Le Bihan D. What can we see with IVIM MRI. Neuroimage, 2019, 187: 56-67.
[7]
Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR Biomed, 2017, 30(11): e3780.
[8]
Gu LP, He GJ, Ma J. The principle and prospect of intravoxel incoherent motion imaging. Chin J Magn Reson Imaging, 2017, 8(4): 241-242.
[9]
Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol, 2011, 196(6): 1351-1361.
[10]
Li SL, Mou AN, Li X, et al. Impact factors of cardiac MR intravoxel incoherent motion imaging in normal population in China. Chin J Interv Imaging Ther, 2018, 15(12): 748-752.
[11]
Delattre BM, Viallon M, Wei H, et al. In vivo cardiac diffusion-weighted magnetic resonance imaging: quantification of normal perfusion and diffusion coefficients with intravoxel incoherent motion imaging. Invest Radiol, 2012, 47(11): 662-670.
[12]
Moulin K, Croisille P, Feiweier T, et al. In vivo free-breathing DTI and IVIM of the whole human heart using a real-time slice-followed SE-EPI navigator-based sequence: A reproducibility study in healthy volunteers. Magn Reson Med, 2016, 76(1): 70-82.
[13]
Spinner GR, von Deuster C, Tezcan KC, et al. Bayesian intravoxel incoherent motion parameter mapping in the human heart. J Cardiovasc Magn Reson, 2017, 19(1): 85.
[14]
Spinner GR, Stoeck CT, Mathez L, et al. On probing intravoxel incoherent motion in the heart-spin-echo versus stimulated-echo DWI. Magn Reson Med, 2019, 82(3): 1150-1163.
[15]
Norris DG. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed, 2001, 14(2): 77-93.
[16]
Xiang SF, Zhang XQ, Yang SJ, et al. STROBE-A preliminary investigation of IVIM-DWI in cardiac imaging. Medicine (Baltimore), 2018, 97(36): e11902.
[17]
Liu MX, Zhang WS, Zhang ZH, et al. A preliminary study of the cardiac magnetic resonance multi-low-b DWI technology. Chin Med Dev, 2016, 31(3): 42-47.
[18]
Sumi M, Van Cauteren M, Sumi T, et al. Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology, 2012, 263(3): 770-777.
[19]
Callot V, Bennett E, Decking UK, et al. In vivo study of microcirculation in canine myocardium using the IVIM method. Magn Reson Med, 2003, 50(3): 531-540.
[20]
Li ZW, Yuan SS, Huang L, et al. A preliminary study of magnetic resonance myocardial multi-b values diffusion weighted imaging. Radiol Pract, 2013, 28(3): 337-340.
[21]
Laissy JP, Gaxotte V, Ironde-Laissy E, et al. Cardiac diffusion-weighted MR imaging in recent, subacute, and chronic myocardial infarction: a pilot study. J Magn Reson Imaging, 2013, 38(6): 1377-1387.
[22]
An DA, Shi RY, Wu R, et al. Different myocardial perfusion status in acute myocardial infarction and infarct-like myocarditis: A novel intravoxel incoherent motion diffusion-weighted imaging based MRI study. Acad Radiol, 2019, 6332(19): 30533.
[23]
Xiang SF, Zhang XQ, Yang SJ, et al. Intravoxel incoherent motion magnetic resonance imaging with integrated slice-specific shimming for old myocardial infarction: A pilot study. Sci Rep, 2019, 9(1): 19766.
[24]
An DA, Chen BH, Wu R, et al. Diagnostic performance of intravoxel incoherent motion diffusion-weighted imaging in the assessment of the dynamic status of myocardial perfusion. J Magn Reson Imaging, 2018, 48(6): 1602-1609.
[25]
Cecchi F, Sgalambro A, Baldi M, et al. Microvascular dysfunction, myocardial ischemia, and progression to heart failure in patients with hypertrophic cardiomyopathy. J Cardiovasc Transl Res, 2009, 2(4): 452-461.
[26]
Mou A, Zhang C, Li M, et al. Evaluation of myocardial microcirculation using intravoxel incoherent motion imaging. J Magn Reson Imaging, 2017, 46(6): 1818-1828.
[27]
Wei KX, Chen ZX, He XC, et al. 3.0 T cardiac magnetic resonance intravoxel incoherent motion in evaluating microvascular dysfunction of hypertrophic cardiomyopathy patients. Acad J Sec Mili Med Univ, 2019, 40(3): 277-283.
[28]
Potet J, Rahmouni A, Mayer J, et al. Detection of myocardial edema with low-b-value diffusion-weighted echo-planar imaging sequence in patients with acute myocarditis. Radiology, 2013, 269(2): 362-369.
[29]
Wu LM, Wu R, Ou YR, et al. Fibrosis quantification in hypertensive heart disease with LVH and Non-LVH: Findings from T1 mapping and contrast-free cardiac diffusion-weighted imaging. Sci Rep, 2017, 7(1): 559.
[30]
Terrier B, Dechartres A, Gouya H, et al. Cardiac intravoxel incoherent motion diffusion-weighted magnetic resonance imaging with T1 mapping to assess myocardial perfusion and fibrosis in systemic sclerosis: Association with cardiac events from a prospective cohort study. Arthritis Rheumatol, 2020 DOI: 7. DOI: .org/10.1002/art.41308.

PREV FMRI research progress of post-stroke aphasis following treatment
NEXT Progress of Gd-EOB-DTPA in the diagnosis and evaluation of HCC
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn